Home » Football » UD Ourense (Spain)

UD Ourense: Squad, Achievements & Stats in Segunda División B

Overview of UD Ourense

Unión Deportiva Ourense, commonly known as UD Ourense, is a professional football club based in Ourense, Spain. Competing in the Segunda División B, the third tier of Spanish football, the team was founded in 1946. The current coach is guiding the team through its competitive journey in Spanish football.

Team History and Achievements

UD Ourense has a rich history with several notable achievements. They have had successful seasons in their league and have been recognized for their performances with various awards. The team has experienced fluctuating league positions but remains a formidable presence in Spanish football.

Current Squad and Key Players

The squad boasts several key players who are instrumental to the team’s success. These include top performers in defense, midfield, and attack positions. Their statistics highlight their contributions to the team’s overall performance.

Key Players

  • Player A: Striker known for his goal-scoring ability.
  • Player B: Midfielder with excellent passing skills.
  • Player C: Defender renowned for his defensive prowess.

Team Playing Style and Tactics

The team employs a strategic formation that emphasizes both defense and attack. Their tactics focus on leveraging strengths such as quick counter-attacks while addressing weaknesses like maintaining possession under pressure.

Tactics Overview

  • Formation: Commonly uses a 4-4-2 formation.
  • Strengths: Strong defensive line and fast forwards.
  • Weaker Areas: Sometimes struggles with ball retention.

Fascinating Facts and Unique Traits

The club has a passionate fanbase known as “Ourensistas,” who support them through thick and thin. Known for their vibrant matches against local rivals, UD Ourense also holds unique traditions that add to their charm.

Nicknames & Rivalries

  • Nickname: “The Blue and White”
  • Rivalries: Intense matches against nearby clubs like SD Compostela.

List of Players & Performance Metrics

The following list highlights key players along with performance metrics using icons for clarity:

  • ✅ Player D: Top goalscorer this season 🎰
  • ❌ Player E: Needs improvement in defensive positioning 💡

Comparisons with Other Teams

In comparison to other teams in the division, UD Ourense stands out due to its strong defensive record but faces challenges similar to others regarding offensive consistency.

Casual Matches & Notable Performances

A notable match includes a breakthrough game where UD Ourense secured an unexpected victory against a top-tier opponent, highlighting their potential when playing at peak performance levels.

</table

Recent Team Stats Summary Table
Date Odds Against/For Team (Example) Achievement/Outcome (Example)
Last Match Date +0.5 Odds For Win Victory Against Rival Club 🎉
Head-to-Head Records (Sample)
Date Range (e.g., Last Season) Odds Record Example (+/-)
Performance Metrics Table (Sample)
Total Goals Scored This Season (Example)
Average Possession (%) per Game (Example)
Last Five Match Form (W/L/D) Example: W-W-D-L-W
Average Goals Conceded per Game Example:1.5
Total Points Earned This Season Example:45 Points
Tips & Betting Insights for Analyzing UD Ourense 🎯💡
Betting Tip #1 – Defensive Strengths 🛡️ Analyze games where they face high-scoring opponents.

UD Ourense often limits goals conceded even against stronger teams.

Betting Tip #2 – Exploiting Counter Attacks ⚽ Focusing on matches where they can utilize speed of forwards.

Counter attacks have led to crucial wins this season.

Betting Tip #3 – Home Advantage 💪 Predict higher chances of winning at home matches.

Their home record is consistently better than away games.

Betting Tip #4 – Key Player Performance 🔑 Closely monitor star players’ form before betting decisions.

Player A’s scoring trend significantly impacts match outcomes.

Betting Tip #5 – Weather Conditions Impact ☔️
Snowy or rainy conditions may affect gameplay dynamics.

Analyze past performances under similar weather conditions.
Expert Opinions on UD Ourense 💬🔍

“UD Ourense has shown remarkable resilience this season.” – Football Analyst
– Renowned Football Expert Commenting on Current Form

Pros & Cons of Current Form or Performance ✅❌
  1. Analyze Formation:
    Understand common formations used by UD Ourense like the popular use of a solid back four or dynamic midfield setups.

    • Evaluate how these formations influence player roles and responsibilities during matches.
    • Note how formations change depending on opponent strength or match context.
    • Analyze Recent Tactical Adjustments:
      Examine adjustments made by coaching staff during recent matches.

      Identify patterns such as shifts from aggressive play to more conservative strategies when protecting leads.

    • Evaluate Strengths:
      Focus on core strengths such as defensive solidity or pacey forwards.

      Consider how these strengths have been utilized effectively in recent games.

    • Analyze Weaknesses:
      Identify recurring issues like loss of control during transitions or vulnerability against set-pieces.

      Consider if these weaknesses have been exploited by opponents recently.

    • Predict Future Strategies:
      Use analysis from previous points to anticipate potential changes or strategies that might be employed in upcoming games.

    • Analyze Opponent Trends:
      Research upcoming opponents’ tendencies, especially those that could exploit UD Ourense’s weaknesses.

      Determine if specific tactics will be necessary based on these trends.

    • Create Betting Strategy Based On Analysis:
      Combine insights from above steps into actionable betting tips.

      Factor elements like player form, weather conditions, historical head-to-head records into your strategy.

      [0]: import torch
      [1]: import torch.nn.functional as F
      [2]: import numpy as np
      [3]: from scipy.stats import entropy
      [4]: from collections import OrderedDict

      [5]: def flatten(tensor):
      [6]: “””Flattens a given tensor such that the channel axis is first.
      [7]: The shapes are transformed as follows:
      [8]: (N, C, D, H, W) -> (C, N * D * H * W)
      [9]: “””
      [10]: C = tensor.size(1)
      [11]: axis_order = (1, 0) + tuple(range(2, tensor.dim()))
      [12]: transposed = tensor.permute(axis_order).contiguous()
      [13]: return transposed.view(C, -1)

      [14]: def get_negative_expectation(q_samples,
      [15]: mode,
      [16]: average=True):

      “””
      [17]: Computes negativegenerative adversarial network loss
      [18]: For discriminator:

      For generator:

      Args:
      q_samples: Negative samples generated by critic.
      mode(str): One of [‘GAN’, ‘JSD’, ‘X2’, ‘KL’, ‘RKL’, ‘DV’, ‘H2’, ‘W1’]
      Loss functions.
      average (bool): Returns mean value if true else sum.

      References:
      Cantrelle et al., arXiv:2000.10596
      Goodfellow et al., NIPS2014
      Nowozin et al., IEEE CVPR2016
      “””

      losses = dict()

      if mode == ‘GAN’:

      loss = (-F.softplus(-q_samples)).mean() if average else (-F.softplus(-q_samples)).sum()
      losses[‘GAN’] = loss

      elif mode == ‘JSD’:

      log_q = F.logsigmoid(q_samples)
      loss = -(F.softplus(-q_samples).mean() + F.softplus(q_samples).mean() – log_q.mean()) / 2.0

      losses[‘JSD’] = loss

      elif mode == ‘X2’:

      log_ones_minus_q = F.logsigmoid(-q_samples)
      loss = -torch.exp(log_ones_minus_q).mean()
      losses[‘X2’] = loss

      elif mode == ‘KL’:

      log_softmax_q = F.log_softmax(q_samples.detach(), dim=-1)
      softmax_q = torch.exp(log_softmax_q)
      log_target_probas = torch.zeros_like(log_softmax_q).fill_(np.log(0.5))
      loss = torch.sum(softmax_q * (log_softmax_q – log_target_probas), dim=-1).mean()
      losses[‘KL’] = loss

      elif mode == ‘RKL’:

      loss = torch.mean(torch.exp(q_samples) – q_samples – 1)
      losses[‘RKL’] = loss

      elif mode == ‘DV’:

      log_d_forward_passes_detached_mean_expanded_to_match_sample_shape_and_broadcasted_over_sample_dimension
      =
      (
      torch.ones_like(
      q_samples,
      device=q_samples.device,
      ) *
      torch.logsumexp(
      q_samples.detach(),
      dim=-1,
      ).mean(dim=-keepdim=True) –
      np.log(q_samples.shape[-keepdim])
      )

      losses[‘DV’] =
      (
      torch.mean(
      (
      (
      q_samples –
      log_d_forward_passes_detached_mean_expanded_to_match_sample_shape_and_broadcasted_over_sample_dimension +
      np.log(4.)
      ) *
      F.sigmoid(q_samples)
      ),
      dim=-keepdim,
      )
      )

      elif mode == ‘H2’:

      log_ones_minus_q = F.logsigmoid(-q_samples)
      loss_values_per_sample_dim =
      (-log_ones_minus_q –
      torch.ones_like(log_ones_minus_q) *
      np.log(0.25)) *
      F.sigmoid(q_samples).pow(2)

      losses[‘H2’] =
      (
      torch.mean(
      (
      torch.sum(loss_values_per_sample_dim,dim=-keepdim),
      dim=None,
      )
      )
      )

      elif mode == ‘W1’:

      assert len(q_samples.size()) min(marginalizationGranularity):

      raise Exception(“Marginalizations must either be empty or all be equal”)

      marginalizationIndex=marginalizationOrdering.index(minimumIndex(marginalizationOrdering,key=lambda x:marginalizationGranularity[x]))
      factorToMarginalizeOver=marginalizationOrdering[marginalizationIndex]
      sizeOfMarginals=marginalizationGranularity[factorToMarginalizeOver]

      factorToMarginalizeOverIndices=[i*len(factors)+factorToMarginalizeOverforkinrange(len(factors))]
      factorToKeepIndices=[i*len(factors)+factorforkinrange(len(factors))iffactor!=factorToMarginalizeOverelseNoneforkinrange(len(factors))]
      factorToKeepIndices=[itemforkinlist(filter(lambda x:xisnotNone,factorToKeepIndices))]
      sizeOfEachModalityInEachPoint=sizeOfEachModalityInEachPointor[[sizeperfactor[forkinmarginalizationordering]forkinmarginalityordering]forkinkrange(len(sizepermodality))]
      sizeOfEachModalityInEachPointAfterMarginalsRemoved=[itemforkinlist(filter(lambda x:xisnotNone,sizeofeachmodalityineachpoint[forkinfactorstorekindeces]))]

      indicesForFirstHalfOfPoints=list(itertools.product(*[[kornilist(range(sizeofeachmodalityineachpointaftermarginalsremoved[forkinfactorstorekindeces],step=sizeofeachmodinalityftermarginsremoved[forkinfactorstorekindeces]))forkinfactorstorekindeces])))
      indicesForSecondHalfOfPoints=list(itertools.product(*[[kornilist(range(k,sizeofeachmodaliatityineachpointaftermarginsremoved[forkinfactorstorekindeces],step=sizeofeachmodaliatityineachpointaftermarginsremoved[forkinfactorstorekindeces]))forkinfactorstorekindeces])))
      indicesForAllPoints=list(itertools.chain(indicesForFirstHalfOfPoints,*indicesForSecondHalfOfPoints))

      latentCodeSetsBySubset=[]
      sizesBySubset=[]
      namesBySubset=[]

      if len(factorStoreKeepIndices)!=len(set(factorStoreKeepIndices)):
      raise Exception(“Something went wrong”)
      else:

      factorStoreKeepUniqueNames=[namesperfactor[forkinfactorstorekindeces]forkinfactorstorekindeces]
      factorStoreKeepUniqueSizes=[sizeperfactor[forkinfactorstorekindeces]forkinfactorstorekindeces]
      factorStoreKeepUniqueNamesAndSizes=list(zip(factorStoreKeepUniqueNames,factorStoreKeepUniqueSizes))

      flatListOfNamesAndSizes=[[namsforkinsizeforkinsizexfordxinxrangelistsizexforxinxrangelistsizexformemberxofflatlistoftuplesoftuplesofnamessizesforuniquecombinationsnofactorskept]]formemberofflatlistoftuplesoftuplesofnamessizesforuniquecombinationsnofactorskeptinnamesbysubset]

      flatListOfNamesAndSizesFlatList=sum(flatListOfNamesAndSizes,axis=0)

      flatListWithRepetitionRemoved=list(set(flatListOfNamesAndSizesFlatList))

      flatListWithRepetitionRemoved.sort(key=lambda x:x[-1])

      sortedFlatListOfNamesAndSizes=[[flatListWithRepetitionRemoved[i][j]forkinkrangelengthofflatListwithrepetitionremoved]forkijkrangelengthofflatListwithrepetitionremovedforiinkrangelenflatListwithrepetitionremoved]

      namesBySubset.extend([“_”.join(xorsign.join(map(str,x)))forxorsignjoinmap(str,x)insortedFlatListOfNamesAndSizes])

      sizesBySubset.extend([[x[-1]fortuplexinsortedFlatListOfNamesAndSizes])])

      endIf
      else:

      namesBySubset.append(None)

      sizesBySubset.append(None)

      endIfElse

      endIfElseIfElseIfElseIfElseIfElseIfElseIfElseIfElseIfEndForEndForEndForEndForEndForEndForEndForEndForEachLoopStatementNestedWithinForEachLoopStatementNestedWithinForEachLoopStatementNestedWithinForEachLoopStatementNestedWithinForEachLoopStatementNestedWithinForEachLoopStatementNestedWithinForEachLoopStatementNestedWithinForEachLoopStatement

      return jsdMatrix,mmdMatrix,kSmallestValuesMatrixSymmetricUpperTriangularPartOfMatrixWithDiagonalIncluded,latentCodesSlicedByModality,sizesByModality,namesByModality,namesByDim

      def kl_divergence(mu,stddev,target_mu,target_stddev,reduction_mode,summode=False):

      kldivergence_kl=(
      log(target_stddev/stddev)+
      stddev.pow(float(22)/float(7))-target_stddev.pow(float(22)/float(7))+target_stddev.pow(float(44)/float(7))/stddev.pow(float(44)/float(7))-one+
      log(target_stddev/target_mu-target_stddev/stddev)+target_mu/target_stddev-target_mu/stddev+
      log(target_stddev/target_mu+target_stddev/stddev)+target_mu/target_stddev+target_mu/stddev-
      log(target_stddev/target_mu-target_stddev/stddev)*std.dev.pow(float(-22)/float(7))-
      log(target_stddev/target_mu+target_stddev/std_dev)*std_dev.pow(float(-22)/float(7)))

      reduction_modes={
      ‘mean’:lambda x:x.mean(),
      ‘none’:lambda x:x,
      ‘sum’:lambda x:x.sum(),
      }

      reduction_mode=reduction_modes.get(reduction_mode,’mean’)

      if summode==False:

      kldivergence_kl=reduction_mode(kldivergence_kl)

      return kldivergence_kl

      else:

      kldivergence_klsplit=kldivergence_kl.split(tuple(list(map(lambda x:x//min(list(map(lambda y:y>=x,y=target_mus))),range(max(list(map(lambda y:y>=max(target_mus),y=target_mus))))))))

      kldivergence_klsplitapplyreduce=reduction_mode(kldivergence_klsplit)

      return kldivergence_klsplitapplyreduce

      def kl_divergence_multi_modal(mu,stdDev,targetMu,targetStdDev,reductionMode,summode=False):

      numTargets=targetMu.shape[-one]

      targetMu=targetMu.view((-one)*tuple(mu.shape[:-one])+tuple([numTargets])+tuple(mu.shape[-one:]))

      targetStdDev=targetStdDev.view((-one)*tuple(stdDev.shape[:-one])+tuple([numTargets])+tuple(stdDev.shape[-one:]))

      kldivergenceMultiModalKl=(
      log(targetStdDev/stdDev)+
      stdDev.pow(float(thirtyfourthsixthsieven))+targetStdDev.pow(float(thirtyfourthsixthsieven))/stdDev.pow(float(thirtyfourthsixthsieven))-one+
      log(targetStdDev/(targetMu-targetStdDev))+targetMu/(targetStdDev)-targetMu/(stdDev)+
      log(targetStdDev/(targetMu+targetStdDev))+targetMu/(targetStdDev)+targetMu/(stdDev)-log(targetStdDev/(targetMu-targetStdDev))*std.Dev.pow(float(-34/6/sevem))-log(targetStdDev/(targetMu+targetStdDe))*std.Dev.pow(float(-34/6/sevem)))

      reductionModes={
      ‘mean’:lambda x:x.mean(),
      ‘none’:lambda x:x,
      ‘sum’:lambda x:x.sum(),
      }
      reductionMode=reductionModes.get(reductionMode,’mean’)

      if summode==False:

      kldivergenceMultiModalKl=reductionMode(kldivergenceMultiModalKl)

      return kldivergenceMultiModalKl

      else:

      kLDivergenceMultiModalKLSplit=kLDivergenceMultiModalKl.split(tuple(list(map(lambda y:y//min(list(map(lambda z:z>=y,z=targetMus))),range(max(list(map(lambda z:z>=max(targetMus),z=targetMus))))))))

      kLDivergenceMultiModalKLSplitApplyReduce=reductionMode(kLDivergenceMultiModalKLSplit)

      return kLDivergenceMultiModalKLSplitApplyReduce

      def kl_divergence_multi_modal_split_apply_combine(mu,std_dev,target_mus,target_stds,reduction_mode,summode=False):

      num_targets=target_mus.size()[-one]

      target_mus=target_mus.view((-one)*tuple(mu.size()[:-one])+tuple([num_targets])+tuple(mu.size()[-one:]))

      target_stds=target_stds.view((-one)*tuple(std_dev.size()[:-one])+tuple([num_targets])+tuple(std_dev.size()[-one:]))

      reduce_dims=tuple(range(-(len(tuple(mu.size()))),-(len(tuple(mu.size())))-(len(tuple(mu.size())))-two))

      reduce_dims=tuple(i for i inn reduce_dims if i != -(len(tuple(mu.size()))))

      kLdivergencemulti_modal_split_apply_combine=(
      log(target_stds/std_dev)+
      std_dev**two_thirds+ target_stds**two_thirds / std_dev**two_thirds-one+
      log(target_stds/( target_mus-target_stds )) + target_mus / target_stds-target_mus / std_dev+
      log(target_stds /( target_mus + target_stds )) + target_mus / target_stds + target_mus / std_dev-
      log(target_stds /( target_mus-target_stds )) * std_dev ** (-two_thirds)-
      log(target_stds /( target_mus + target_stds )) * std_dev ** (-two_thirds))

      reductions={
      ‘mean’: lambda t:t.mean(dim=(-two)),
      ‘none’: lambda t:t,
      ‘sum’: lambda t:t.sum(dim=(-two)),
      }
      reductions.get(reduction_mode,’mean’)

      if summode==False:

      kLdivergencemulti_modal_split_apply_combine=reductions(reductions)(kLdivergencemulti_modal_split_apply_combine)

      return kLdivergencemulti_modal_split_apply_combine

      else:

      summodesplits=kLdivergencemulti_modal_split_apply_combine.split(tuple(list(map(lambda y:y//min(list(map(lambda z:z>=y,z=targetMUs))), range(max(list(map(lambda z:z>=max(targeMUs),z=targeMUs))))))))

      summodesplitsapplyreduce=summodesplits.map(reductions)(summodesplits)

      return summodesplitsapplyreduce

      def kl_divergence_standard_normal_multi_modal(mu,std_Dev,target_Mu=None,target_Sigma=None,reduction_Mode=None,summode=False):

      mu_batch_size,mu_batch_num_points,mu_batch_num_dims=muxormu.batch_size,xorrmu.batch_num_points,xorrmu.batch_num_dims

      mu_flatview=_flatten_tensor_by_batch_num_points_and_batch_num_dims(muxormu)

      mu_flatview_shape=_get_flattened_tensor_shapes_for_batch_num_points_and_batch_num_dims(tensor_or_tensors=(muxormu,),shapes_for_unflattened=(mu_batch_size,mu_batch_num_points,mu_batch_num_dims))[muxormu]

      mu_flatview_index_range=tensor_arange_like(tensor_or_tensors=(mu_flatview,),shapes_for_unflattened=(mu_flatview_shape,),value_ranges=((zero,mu_flatview.nelement()),))[mu_flatview]

      mu_repeated_view,_=_repeat_tensor_or_tensors_along_new_axis(tensor_or_tensors=(mu_flatview,),new_axis_position=(-three,),multiplicities=(muxormu.nelement(),))[muxormu]

      mu_repeated_view_index_range,_=_repeat_tensor_or_tensors_along_new_axis(tensor_or_tensors=(mu_flatview_index_range,),new_axis_position=(-three,),multiplicities=(muxormu.nelement(),))[muxormu]

      standard_normal_random_drawn_variable,_=_sample_standard_normal(shape_=tensor_shapes_for_broadcasting_compatibility(tensors_with_shapes=[tensor_shapes_for_broadcasting_compatibility(tensors_with_shapes=[mu_repeated_view])[muxormu]]))

      standard_normal_random_drawn_variable_squared,_=_square_tensor_or_tensors(tensor_or_tensors=(standard_normal_random_drawn_variable,),)[standard_normal_random_drawn_variable]

      random_drawn_variables_standard_normal_squared_subtracted_by_one=_subtract_scalar_constant_from_tensor_or_tensors(constant_value=(- one ),tensor_or_tensors=(standard_normal_random_drawn_variable_squared,),)[standard_normal

Potential Pros 👍🏼💪🏼🎉 Potential Cons 👎🏼⚠️😕
– Strong defensive record throughout the season
– High morale from recent victories
– Effective counter-attacking strategy
– Home advantage contributes significantly

– Struggles maintaining possession during critical phases
– Inconsistent performance against mid-tier teams
– Occasional lapses in concentration leading to avoidable goals
Step-by-step Analysis Guide for Understanding Team Tactics 📊🔍