U18 Premier League Cup Group E Football Matches in England
U18 Premier League Cup Group E Football Matches in England
The U18 Premier League Cup is an exciting showcase of young talent in English football. Group E features some of the most promising players from top clubs across the nation. This guide provides an in-depth look at the daily fixtures, odds trends, and expert betting tips to help you stay ahead of the game. Whether you're a passionate fan or a keen bettor, this content is designed to enhance your experience with comprehensive insights and analysis.
Daily Fixtures Overview
Keeping track of the daily fixtures is crucial for fans and bettors alike. Here's a detailed breakdown of the matches scheduled for Group E:
- Week 1:
- Match 1: Team A vs. Team B - Venue: Stadium X
- Match 2: Team C vs. Team D - Venue: Stadium Y
- Week 2:
- Match 3: Team A vs. Team C - Venue: Stadium Z
- Match 4: Team B vs. Team D - Venue: Stadium W
- Week 3:
- Match 5: Team A vs. Team D - Venue: Stadium X
- Match 6: Team B vs. Team C - Venue: Stadium Y
The fixtures are subject to change due to unforeseen circumstances, so it's advisable to check official sources for the latest updates.
Odds Trends Analysis
Odds trends provide valuable insights into the potential outcomes of matches. Here's an analysis of the current odds trends for Group E:
- Team A:
- Current Odds: 1.75 (Win), 3.50 (Draw), 4.00 (Lose)
- Trend Analysis: Favorable home advantage and strong youth development program.
- Team B:
- Current Odds: 2.00 (Win), 3.25 (Draw), 3.75 (Lose)
- Trend Analysis: Recent form slump but strong individual performances.
- Team C:
- Current Odds: 2.50 (Win), 3.00 (Draw), 2.80 (Lose)
- Trend Analysis: Consistent performance with a balanced squad.
- Team D:
- Current Odds: 3.00 (Win), 3.50 (Draw), 2.50 (Lose)
- Trend Analysis: High potential but inconsistent results.
Odds can fluctuate based on various factors such as player injuries, weather conditions, and managerial changes. Keeping an eye on these trends can help bettors make informed decisions.
Betting Tips and Strategies
Betting on youth football can be both exciting and rewarding if approached with the right strategies. Here are some expert tips to enhance your betting experience:
Betting on Favorites
Favoring teams with strong youth academies can be a safe bet due to their consistent performance and quality training facilities.
- Tip: Consider placing bets on teams with a history of producing top-tier talent.
Betting on Underdogs
Underdogs often have the element of surprise and can upset stronger teams, making them attractive for high-risk, high-reward bets.
- Tip: Look for teams with recent improvements or key player returns.
Betting on Draws
In closely matched fixtures, betting on a draw can be a strategic move, especially when both teams have similar strengths.
- Tip: Analyze head-to-head statistics and recent form before placing a draw bet.
In-Play Betting Strategies
In-play betting allows you to adjust your bets based on real-time match developments.
- Tip: Monitor live odds and capitalize on sudden shifts in momentum.
Squad Formations and Key Players
Understanding team formations and key players is essential for predicting match outcomes.
- Team A:
- Formation: 4-3-3
- Key Player: Striker John Doe - Known for his pace and finishing ability.
- Team B:
- Formation: 4-4-2
- Key Player: Midfielder Jane Smith - Renowned for her vision and passing skills.
- Team C:
- Formation: 3-5-2
- Key Player: Defender Mike Johnson - Strong defensive presence with leadership qualities.
- Team D:
- Formation: 4-2-3-1zzy106/AlphaZero<|file_sep|>/src/alpha_zero.py
import numpy as np
import random
from collections import defaultdict
import math
from model import *
class AlphaZero():
def __init__(self):
self.alpha = Alpha()
self.beta = Beta()
self.policy_net = self.alpha.policy_net
self.value_net = self.alpha.value_net
def train(self, env):
for i in range(1000):
print("epoch ", i)
games = []
for _ in range(1000):
games.append(self.play_game(env))
batch = self.process_batch(games)
self.update(batch)
def update(self, batch):
policy_loss = self.update_policy(batch)
value_loss = self.update_value(batch)
def update_policy(self, batch):
self.policy_net.zero_grad()
policy_loss = torch.zeros(1)
for state_t, mcts_policies in batch:
state_t = torch.from_numpy(state_t).float().unsqueeze(0)
policy_t = torch.from_numpy(np.array(mcts_policies)).float()
policy_t.requires_grad = True
log_probabilities = self.policy_net(state_t)
log_probabilities = log_probabilities.squeeze()
loss = -torch.sum(policy_t * log_probabilities)
policy_loss += loss
policy_loss.backward()
for param in self.policy_net.parameters():
param.data.add_(-0.001 * param.grad.data)
def update_value(self, batch):
self.value_net.zero_grad()
value_loss = torch.zeros(1)
for state_t, z in batch:
state_t = torch.from_numpy(state_t).float().unsqueeze(0)
z_t = torch.tensor([z])
v = self.value_net(state_t)
v_loss = torch.pow(z_t-v, 2)
value_loss += v_loss
value_loss.backward()
for param in self.value_net.parameters():
param.data.add_(-0.001 * param.grad.data)
def play_game(self, env):
state = env.reset()
moves_states_values_probs_rewards= []
while True:
policy_vector_value_state_probs_state_values_reward_state = self.get_action_probs_and_value(env.state_to_matrix(state))
action_probs_vector_state_values_reward_state_mcts_probs_state_values_reward_state= policy_vector_value_state_probs_state_values_reward_state[0]
action_probs_vector_state_values_reward_state_mcts_probs_state_values_reward_state[1] *= -1 # Invert value
moves_states_values_probs_rewards.append(action_probs_vector_state_values_reward_state_mcts_probs_state_values_reward_state) # append MCTS probabilities
action = np.random.choice(np.arange(len(action_probs_vector_state_values_reward_state_mcts_probs_state_values_reward_state[0])), p=action_probs_vector_state_values_reward_state_mcts_probs_state_values_reward_state[0])
next_state,reward,done,_ = env.step(action)
if done:
break
state= next_state
return moves_states_values_probs_rewards
def get_action_probs_and_value(self,state):
sample_number=20
state_matrix= state.reshape(1,state.shape[0],state.shape[1],state.shape[2])
action_probs_vector_value= []
for _ in range(sample_number): # Sample from policy network
sample= np.random.choice(np.arange(len(self.alpha.get_policy(state_matrix)[0])), p=self.alpha.get_policy(state_matrix)[0])
mcts_action_probs_vector_value= self.beta.run_MCTS(state,sample,self.policy_net,self.value_net) # Run MCTS
action_probs_vector_value.append(mcts_action_probs_vector_value) # Append MCTS probabilities
action_probs_vector_mean=np.mean(np.array(action_probs_vector_value)[:,0],axis=0) # Mean MCTS probabilities
action_probs_vector_std=np.std(np.array(action_probs_vector_value)[:,0],axis=0) # Standard deviation MCTS probabilities
value_mean=np.mean(np.array(action_probs_vector_value)[:,1]) # Mean value
value_std=np.std(np.array(action_probs_vector_value)[:,1]) # Standard deviation value
action_prob_std_penalty=np.sum(action_probs_vector_std**2) # Penalty for variance in action probabilities
value_std_penalty=value_std**2 # Penalty for variance in value
certainty_weight=10
incentive_weight=-10
certainty_penalty=certainty_weight*action_prob_std_penalty+incentive_weight*value_std_penalty
final_action_prob_mean=(action_probs_vector_mean*(certainty_weight*action_prob_std_penalty+incentive_weight*value_std_penalty+1)+np.ones(len(action_probs_vector_mean)))/((certainty_weight*action_prob_std_penalty+incentive_weight*value_std_penalty)+len(action_probs_vector_mean))
final_action_prob_mean/=np.sum(final_action_prob_mean)
final_action_probability_and_value=[final_action_prob_mean,value_mean]
return [final_action_probability_and_value,state,value_mean]
def process_batch(self,batch):
new_batch=[]
for game in batch:
total_discount_factor=1
for move_number,state_mcts_policies in enumerate(game[::-1]):
state,mcts_policies,reward,value= state_mcts_policies
new_batch.append((state,mcts_policies,reward,total_discount_factor*value))
total_discount_factor*=0.9
return new_batch
if __name__ == '__main__':
import gym
from gym import wrappers
import pickle
env=gym.make('TicTacToe-v0')
env.monitor.start('videos',force=True)
model= AlphaZero()
model.train(env)
env.monitor.close()<|repo_name|>zzy106/AlphaZero<|file_sep|>/README.md
# AlphaZero
This repository contains a Python implementation of AlphaZero using PyTorch.
## Prerequisites
Before running this code you will need:
* [Python](https://www.python.org/) version >= 3
* [PyTorch](https://pytorch.org/)
* [OpenAI Gym](https://gym.openai.com/)
* [Numpy](https://numpy.org/)
## Instructions
To run the code simply execute `python alpha_zero.py`.
The code will train the agent over a thousand epochs.
After training is complete you can evaluate its performance by running `python eval.py`.
## Usage
The code is split into two main files:
`alpha_zero.py`: Contains all the code necessary for training an AlphaZero agent.
`eval.py`: Contains all the code necessary for evaluating an AlphaZero agent.
## Details
The code uses OpenAI Gym to implement games such as Tic-Tac-Toe or Connect Four.
The agent uses Monte Carlo Tree Search (MCTS) to explore the game tree and estimate the value of each action.
The neural networks used by the agent are implemented using PyTorch.
## License
This project is licensed under the MIT License.
<|file_sep|># Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import numpy as np
import math
from model import *
import copy
class Node:
class Beta():
def softmax(x):
x-=np.max(x)
e_x=np.exp(x)
return e_x/e_x.sum(axis=0)
def unroll_board(board,n_in_row,n_row,n_col):
unrolled_board=[]
unrolled_board.extend(board[:n_row])
unrolled_board.extend([board[i] for i in range(n_row,n_row+n_col)])
unrolled_board.extend(board[n_row+n_col-1:n_row+n_col*n_col-1:n_col])
unrolled_board.extend([board[i] for i in range(n_row+n_col*n_col-n_col,n_row+n_col*n_col)])
unrolled_board.extend([board[i] for i in range(n_row+n_col*n_col-n_col-1,-1,-n_col)])
unrolled_board.extend([board[i] for i in range(n_row+n_col*n_col-1,n_row-1,-1)])
diagonal_1=[board[i] for i in range(n_row+n_col*n_col-n_col,n_row+n_col*n_col)]
diagonal_2=[board[i] for i in range(n_row,n_row+n_col*n_col-n_col,n_col+1)]
diagonal_3=[board[i] for i in range(n_row,n_row+n_col*n_col-n_col,-n_col+1)]
diagonal_4=[board[i] for i in range(n_row+n_col*n_col-n_col-1,-1,-n_col-1)]
unrolled_board.extend(diagonal_1)
unrolled_board.extend(diagonal_2)
unrolled_board.extend(diagonal_3)
unrolled_board.extend(diagonal_4)
return unrolled_board
def run_MCTS(root_index,current_observation,policy,value,n_in_row,max_actions,width,
epsilon,gamma,layers_sizes,c_puct):
root_node=Node(current_observation.copy(),None)
if root_node.board[root_index]==-1:
raise Exception("Trying to run MCTS from non-empty square")
nodes=[]
all_observation=[]
all_hidden=[]
all_node_index=[]
all_parent_index=[]
all_actions=[]
all_num_infq=[]
all_win_backprop=[]
while True: