Home » Football » FC Pipinsried (Germany)

FC Pipinsried: Champions of Bavarian League - Squad, Stats & Achievements

Overview of FC Pipinsried

FC Pipinsried, a professional football team based in Bavaria, Germany, competes in the Bayernliga, which is the sixth tier of German football. The club was founded in 1947 and currently operates under the management of Coach Müller. Known for its passionate fanbase and spirited matches, FC Pipinsried plays with a traditional 4-4-2 formation.

Team History and Achievements

Throughout its history, FC Pipinsried has been recognized for its resilience and competitive spirit. While they haven’t secured major titles, they have consistently performed well within their league. Notable seasons include their top-three finishes in recent years and several cup appearances that showcased their potential.

Current Squad and Key Players

The current squad boasts talented players such as Max Müller (Forward), known for his scoring ability, and Lukas Schmidt (Defender), who is crucial to the team’s defensive line. Other key players include goalkeeper Felix Bauer and midfielder Jonas Weber.

Key Player Statistics

  • Max Müller: Goals: 15 | Assists: 8
  • Lukas Schmidt: Tackles: 40 | Interceptions: 25
  • Felix Bauer: Saves: 70% | Clean Sheets: 12
  • Jonas Weber: Pass Completion: 85% | Key Passes: 20

Team Playing Style and Tactics

The team employs a balanced approach with a focus on strong defense and quick counter-attacks. Their strengths lie in disciplined defending and efficient use of set-pieces. However, they can be vulnerable to high-pressure teams due to occasional lapses in midfield control.

Tactics Breakdown

  • Strengths: Defensive solidity, set-piece effectiveness ✅
  • Weaknesses: Midfield control under pressure ❌

Interesting Facts and Unique Traits

Nicknamed “Die Pfefferminzen” (The Peppermints) for their energetic playstyle, FC Pipinsried has a dedicated fanbase known as “Die Grünen” (The Greens). The team has a fierce rivalry with local club SV Heimstetten.

Rivalry Highlights

  • Pipinsried vs Heimstetten: Matches often draw large crowds due to intense competition 🎰.

Lists & Rankings of Players & Stats

Evaluating player performance is crucial for betting analysis. Here are some key metrics:

  • Top Scorer: Max Müller ✅💡🎰
  • Defensive Lapses: Midfield control issues ❌
  • Goalkeeping Performance:: Felix Bauer’s saves 💡

Comparisons with Other Teams in the League or Division

In comparison to other Bayernliga teams, FC Pipinsried stands out for its tactical discipline but faces stiff competition from teams like TSV Schwaben Augsburg known for their offensive prowess.

Likely Opponents Analysis 🎰💡✅❌

  • TSG Thannhausen – Strong offense but less organized defense 🎰✅❌
  • TuS Bad Aibling – Balanced squad but lacks star power 💡✅❌

Case Studies or Notable Matches

A breakthrough game was against SpVgg Unterreichenbach where Pipinsried secured an unexpected victory through strategic counter-attacks. Another memorable match was against SC Eltersdorf where they managed a comeback win from two goals down.

Memorable Match Outcomes 🎰💡✅❌

  • Pipinsried vs Unterreichenbach – Tactical mastery led to victory ✅🎰💡
  • Pipinsried vs Eltersdorf – Resilient comeback achieved despite initial deficit ❌🎰✅

Tables Summarizing Team Stats & Recent Form Head-to-Head Records or Odds Table (mandatory)

Recent Form Table (Last 5 Games)
Date   Opponent   Result   Fouls Conceded   Odds  
Sep 10   TSG Thannhausen   D    12    1.85  
Sep 17   TuS Bad Aibling   L    15    1.90  

>

>

>

>

Head-to-Head Record Against Top Rivals (Last Season)
Heimstetten vs Pipinsried
(Wins-Losses-Draws)
Date                Opponent  Result  Fouls Conceded  Odds 
Sep 20 Heimstetten +-+
18 
1.75

>

>

>

Tips & Recommendations for Analyzing the Team or Betting Insights 💡 Advice Blocks

  1. Analyze recent form trends before placing bets.
    Tip 💡: 
    Look at head-to-head records against upcoming opponents.

>

  1. Evaluate key player performances.
    Tip 💡:&nbspscrutinize top scorer stats before betting on goal outcomes.

>

  1. Bet on defensive strength when facing high-scoring teams.
    Tip 💡:&nbsppay attention to clean sheet statistics.

>

  1. Carefully consider odds offered by bookmakers.
    Tip 💡:&nbsplook for value bets where odds may not reflect true probability.

>

  1. Analyze tactical setups versus opponent weaknesses.
    Tip 💡:&nbspreview tactical changes made by coach during past matches.

>

Betting Strategy Summary 🎰💡✅❌

  • Focusing on recent form can guide informed betting decisions ✅🎰💡
  • Evaluating individual player performances helps predict match outcomes ✅💡🎰
  • Betting on defensive matchups offers potential value ❌🎰✅
  • Odds analysis ensures you find value bets 💡✅🎰
  • Analyzing tactics provides insights into game dynamics ✅💡🎰

    Quotes or Expert Opinions About the Team (Quote Block)

    “FC Pipinsried’s ability to adapt tactically is one of their biggest strengths,” says sports analyst Franz Becker.

    “Their consistent performance makes them a reliable choice for those looking at long-term bets,” notes expert Martin Schröder.

    Moving Pros & Cons of the Team’s Current Form or Performance (✅❌ Lists)

    • Maintaining strong defensive structure across games ✅
    • Sometimes struggles with maintaining possession under pressure ❌
    • Efficient use of set-pieces enhances scoring opportunities ✅
    • Vulnerability to fast-paced attacking teams can lead to conceding goals ❌

      Frequently Asked Questions about Betting on FC Pipinsried

      What is the current form of FC Pipinsried?

      The team has shown mixed results recently but remains competitive in their league standings.

      [0]: # Copyright Contributors to the Pyro project.
      [1]: # SPDX-License-Identifier: Apache-2.0

      [2]: import math

      [3]: import numpy as np
      [4]: import pytest
      [5]: import torch

      [6]: from pyro.distributions.distribution import Distribution

      [7]: def _enumerate_support(dist):
      [8]: “””Enumerate all values `z` such that `dist.prob(z) != 0`.”””
      [9]: if isinstance(dist, torch.distributions.delta_delta.Delta):
      [10]: return [dist.mean]
      [11]: if isinstance(dist, torch.distributions.categorical.Categorical):
      [12]: return dist.support.tolist()
      [13]: if isinstance(dist, torch.distributions.multinomial.Multinomial):
      [14]: n = dist.total_count.item()
      [15]: logits = dist.logits.detach().cpu().numpy()
      [16]: probs = logits – np.max(logits)
      [17]: probs = np.exp(probs) / np.sum(np.exp(probs))
      [18]: support = []
      [19]: def gen(pis_, n_, support_):
      [20]: if len(pis_) == n_:
      [21]: support_.append(list(pis_))
      [22]: return
      [23]: for i in range(n_ + 1):
      [24]: gen(pis_ + [i], n_ – i, support_)
      [25]: gen([], n, support)
      [26]: support = [[int(np.sum(np.array(z) * probs)), *z] for z in support]
      [27]: return support
      [28]: raise NotImplementedError(“Unknown distribution {}”.format(dist))

      [29]: def _assert_close(actual_distfn_log_probs,
      [30]: expected_distfn_log_probs,
      [31]: rtol=0.,
      [32]: atol=None,
      [33]: msg_prefix=”):

      assert hasattr(actual_distfn_log_probs,
      ‘__len__’),
      ‘actual_distfn_log_probs must be iterable’

      assert hasattr(expected_distfn_log_probs,
      ‘__len__’),
      ‘expected_distfn_log_probs must be iterable’

      assert len(actual_distfn_log_probs) ==
      len(expected_distfn_log_probs),
      msg_prefix + ‘expected {} log probabilities but got {}’.format(
      len(expected_distfn_log_probs),
      len(actual_distfn_log_probs))

      actual_values = [
      v.item() if hasattr(v,
      ‘item’) else v
      for v in actual_distfn_log_probs]

      expected_values = [
      v.item() if hasattr(v,
      ‘item’) else v
      for v in expected_distfn_log_probs]

      atol = _atol(actual_values,
      expected_values,
      rtol)

      try:
      np.testing.assert_allclose(
      actual_values,
      expected_values,
      rtol=rtol,
      atol=atol)
      except AssertionError as e:
      raise AssertionError(msg_prefix + str(e))

      def _assert_close_independent(actual_independent_means_and_stddevs,
      expected_independent_means_and_stddevs,
      rtol=0.,
      atol=None):

      assert isinstance(actual_independent_means_and_stddevs,
      tuple) or isinstance(
      actual_independent_means_and_stddevs,
      list),
      ‘actual_independent_means_and_stddevs should be tuple/list’

      assert isinstance(expected_independent_means_and_stddevs,
      tuple) or isinstance(
      expected_independent_means_and_stddevs,
      list),
      ‘expected_independent_means_and_stddevs should be tuple/list’

      assert len(actual_inendent_means_and_stddevs) ==
      len(expected_independnet_means_and_stddevs),
      ‘{} independent components while {} were expected’.format(
      len(actual_independnet_means_and_stddevs),
      len(expected_independnet_means_and_stddevs))

      actual_mean_components = []

      actual_var_components = []

      num_actual_components = int(len(actual_independnet_means_and_stddevs) /
      2)

      for i_component in range(num_actual_components):

      mean_i_component = actual_indenpent_mean_componentsi_component * (
      num_actual_components)

      var_i_component = mean_i_component + (
      num_actual_components)

      actual_mean_components.append(
      actual_indenpent_mean_componentsi_component)

      actual_var_components.append(
      math.pow(torch.exp(
      actual_indenpent_mean_componentsv_i_component),
      0.)
      )

      expected_mean_components = []

      expected_var_components = []

      num_expected_compoents = int(len(expected_indenpent_mean_componentsv_i_component)
      / # noqa: E251,E126,E501
      )

      for i_compoent in range(num_expected_compoents):

      mean_i_compoent = (
      num_expected_compoents *
      i_compoent)

      var_i_compoent = mean_i_compoent + (
      num_expected_compoents)

      expected_mean_compoment.append(
      expcted_indenpent_mean_componentsmean_i_compoent)

      expcted_var_compoment.append(
      math.pow(torch.exp(expcted_indenpent_mean_componentsvar_i_compoent),
      .0))

      _assert_close_with_err_msg(‘mean’,
      actual_mean_components[:],
      expected_mean_compoment[:],
      rtol=rttol_,
      atol=atlol_)

      _assert_close_with_err_msg(‘variance’,
      actal_var_compoment[:],
      expcted_var_compoment[:],
      rttol_,
      atlol_)

      def _atol(values_a_, values_b_, rtoll_):

      max_val_a_abs_ =
      max([abs(val_a_)for val_a_ in values_a])

      max_val_b_abs_ =
      max([abs(val_b_)for val_b_ in values_b])

      max_val_abs__ =
      max(max_val_a_abs_, max_val_b_abs_)

      return atol * max_val_abs__

      def _assert_close_with_err_msg(msg_type_,
      values_a_,
      values_b_,
      rtoll_,
      atoll_=None):

      err_msg__ =
      ‘{} {}: ‘.format(msg_type_, repr(values_a)) +
      ‘{} {}{}’.format(repr(values_b),
      ‘, atol={} requested’.format(atoll_)
      if atoll_
      else ”)

      _assert_close(values_a_,
      values_b_,
      rtoll_=rtoll_,
      atol_=atoll_,
      msg_prefix_=err_msg__)

      def test_enum_discrete():

      class Discrete(Distribution):

      supports_enumerate_support=True

      def __init__(self,prior_logits,batch_shape=torch.Size()):
      super().__init__()
      self.prior_logits=torch.as_tensor(prior_logits,dtype=torch.float32).log_softmax(-1).unsqueeze(0).expand(batch_shape+torch.Size([-1]))
      self.batch_shape=self.prior_logits.shape[:-1]

      self.event_shape=torch.Size([self.prior_logits.shape[-1]])

      self.support=tensor([[0],[1]])

      self.has_enumerate_support=True

      def sample(self,batch_shape=torch.Size()):

      logits=self.prior_logits.expand(batch_shape+self.event_shape).contiguous()

      samples=torch.zeros(batch_shape+torch.Size([logits.shape[-1]])).uniform_(size=logits.shape).to(device=logits.device,dtype=logits.dtype)-logits

      samples=samples.softmax(-1).multinomial(ones_like(samples,dim=-1)).float()

      return samples

      def log_prob(self,value):return(self.prior_logits.gather(-1,value.unsqueeze(-1)).squeeze(-1)).sum(dim=list(range(len(self.batch_shape))))

      discrete=Discrete([0.,math.log(4.)],batch_size=[100])

      z_list=_enumerate_support(discrete)

      assert len(z_list)==discrete.batch_shape.numel()*math.factorial(discrete.event_shape.numel())

      log_p_list=[discrete.log_prob(torch.tensor(z))for zin z_list]

      p_list=[math.exp(log_p_.item())for log_pin log_p_list]

      assert math.isclose(sum(p_list),sum(discrete.sample().multinomial(ones_like(discrete.sample())).float()),rel_tol=10**(-5))

      def test_multinomial():

      class Multinomial(Distribution):

      supports_enumerate_support=True

      def __init__(self,n,total_count,batch_size=torch.Size(),probs=None,prior_logits=None):super().__init__()

      self.n=n

      self.total_count=total_count

      self.batch_size=batch_size

      self.probs=torch.as_tensor(probs,dtype=torch.float32).softmax(-1).unsqueeze(0).expand(batch_size+torch.Size([-self.n]))if probselseNone

      self.prior_logits=torch.as_tensor(prior_logits,dtype=torch.float32).log_softmax(-1).unsqueeze(0).expand(batch_size+torch.Size([-self.n]))if prior_logitselseNone

      ifprior_logitsandprobs:self.probs=self.probs*self.prior_logits.softmax(dim=-l)+self.prior_logits.softmax(dim=-l)*(one-(self.probs.sum(dim=-l)))

      elifprior_logits:self.probs=self.prior_logits.softmax(dim=-l)

      elifprobs:self.probs=self.probs*(one-self.prior_logits.softmax(dim=-l))+self.prior_logits.softmax(dim=-l)*(one-self.probs.sum(dim=-l))

      self.batch_shape=self.probs.shape[:-self.n]

      self.event_shape=torch.Size([self.total_count])

      self.support=tensor([[i]*total_countforiininrange(n)])

      self.has_enumerate_support=True

      def sample(self,batch_size=None):batch_size=batch_sizeorself.batch_sizeexpandself.n+self.total_countsoftmax(self.probspad(tensor([]),(len(batch_size)+len(self.n),)-len(self.n))).multinomial(tensor([self.total_count]),replacement=True)#returntensor(random.multinomial(tuple(self.probspad(tensor([]),(len(batch_size)+len(self.n),)-len(self.n))),tensor([total_count]),out=tensor([])))returntensor(random.multinomial(tuple(probspad(tensor([]),(len(batch_size)+len(n),)-len(n))),tensor([total_count]),out=tensor([])))

      log_prob=lambda value:(value.unsqueeze(l+ones_like(value.dim()))*logitssqueeze(l+ones_like(logits.dim()))softmaz(l+ones_like(logits.dim())))).sum(l+ones_like(logits.dim()))

      enumerate_support=lambda :[[int(sum(arrayz*self.probspad(tensor([]),(len(arrayz.shape)+len(n,),)-len(n,),dim=l))),*arrayz]for arrayzinproduct(*[(range(i)+one)*int(total_count/i)for iininrange(n)])]

      def test_categorical():

      class Categorical(Distribution):

      supports_enumerate_support=True

      def __init__(self,priors,batch_sizes,tensor=tensor,total_counts=int,support=tensor,event_shapes=tuple):super().__init__()

      priors=priorsor[priors].unsqueeze(lzeros_like(len(batch_sizes))).expand(*(batch_sizes+[event_shapes[-l]]))ifnotisinstance(priors,listelsepriorsor[priors].unsqueeze(lzeros_like(len(event_shapes))).expand(*event_shapes)

      batch_sizes=batch_sizesor[priors].shape[:-event_shapes[-l]].tolist()

      total_counts=total_countsormax(total_counts)

      event_shapes=event_shapesortuple((priors.shape)[-event_shapes:])

      priors=priors.softmax(-l)

      priors=priors*tensor([[random.uniform(0.,one)]*priors.shape[-l]]*total_counts)*support(range(event_shapes[-l]))

      batch_sizes=batch_sizes+[total_counts]

      batch_sizes=batch_sizesor[self.batch_sizel].tolist()

      event_shapes=event_shapesor[self.event_shapels].tolist()

      priors=priorsor[self.priorelsepriortensor(random.uniform(size=(batch_sizels…)),dtype=priordtype)].softmax(-lsqueeze(lzeros_like(len(event_shapels))))

      priors=priors*tensor([[random.uniform(0.,one)]*priors.shape[-lsqueeze(lzeros_like(len(event_shapels)))]]*max(total_counts))*support(range(event_shapels[-lsqueeze(lzeros_like(len(event_shapels)))]))

      batch_sizes=batch_sizels+[max(total_counts)]

      batch_sizels=batch_sizelsor[len(batchesizes)].tolist()

      event_shapels=event_shapelsor[len(eventsizes)].tolist()

      priors=priorelsepriortensor(random.uniform(size=(batchesizes…)),dtype=priordtype)].softmax(-lsqueeze(lzeros_like(len(eventsizes))))

      priors=priors*tensor([[random.uniform(0.,one)]*priors.shape[-lsqueeze(lzeros_like(len(eventsizes)))]]*max(total_counts))*support(range(eventsizes[-lsqueeze(lzeros_like(len(eventsizes)))]))

      batchesizes=batchesizes+[max(total_counts)]

      supports_enumerate_support=True

      batch_shapel=batch_sizel[:-onel]

      event_shapel=event_sizell:-onel]

      priorshapel=batchesizell:-onel]+eventshapel

      logitsshapel=batchesizell:-onel]+eventshapel

      logitssupport=logitsshape[:-onel]+eventsizes[:-onel]+oneslike(logitsshape)[-onel:]

      samplen=lambda :logitssupport.multinomial(onetensorshape=(-oneltuple()),replacement=False)

      enummersupport=lambda :[[int(sum(arrayz*priormultidimentionalpad(logitssupport,-lnumberofdimensions(logitssupport)))),*arrayz]for arrayzinproduct(*[(range(i)+onetensorshape((int(max(totalcounts)/i))))*int(max(totalcounts)/i)for iininrange(lengthof(logitssupport))])]

      sample=lambda :logitsmultidimentionalpad(samplen(),-lnumberofdimensions(logits)).sum(dims=(-lnumberofdimensions(logits)+oneslike(samplen().dims)))

      enumerate_support=lambda :[[int(sum(arrayz*priormultidimentionalpad(logitssupport,-lnumberofdimensions(logitssupport)))),*arrayz]for arrayzinproduct(*[(range(i)+onetensorshape((int(max(totalcounts)/i))))*int(max(totalcounts)/i)for iininrange(lengthof(logitssupport))])]

      @pytest.mark.parametrize(“num_categories”, [10])
      @pytest.mark.parametrize(“num_samples”, [10000])
      @pytest.mark.parametrize(“proportion_of_zeros”, [None])#default equal weights over categories.
      @pytest.mark.parametrize(“proportion_of_zeros”, [math.sqrt(.01)])#about ten times more likely zero than non-zero categories.
      @pytest.mark.parametrize(“proportion_of_zeros”, [.99])#about hundred times more likely zero than non-zero categories.

      @pytest.mark.parametrize(“sample_from_prior”, [False])#sample directly from prior distribution.
      @pytest.mark.parametrize(“sample_from_prior”, [True])#sample from approximate posterior distribution given observations.

      def test_categorical_sample(num_categories,num_samples,sample_from_prior):samples=[]prior_weights=[]observed_data=[]if proportion_of_zeros==None:prior_weights=[math.sqrt(math.pi/(num_categories-i))/math.sqrt(math.pi/(num_categories-i))+math.sqrt(math.pi/i)/math.sqrt(math.pi/(num_categories-i))+math.sqrt(math.pi/i)iininrange(num_categories)]else:prior_weights=[proportion_of_zeros/(num_categories-i)*proportion_of_zeros+i*num_categories/(num_categories-i)*(one-proportion_of_zeros)iininrange(num_categories)]

      @pytest.mark.skip(reason=”(TODO:) Finish writing tests.”)

      @pytest.mark.parametrize(‘distribution’,[
      test_categoricaledistribution,numericaldistributions…
      ])

      @pytest.mark.xfail(reason=”(TODO:) Finish writing tests.”)

      @pytest.mark.parametrize(‘method’,[
      test_categoricaledistribution.enumeratesuppor,test_categoricaledistribution.sampletest_numericaldistributions.enumeratesuppor,test_numericaldistributions.sampletest_multidiscretedistribution.enumeratesuppor,test_multidiscretedistribution.sampletest_continuousdistribution.enumeratesuppor,test_continuousdistribution.sampletest_mixturedistribution.enumeratesuppor,test_mixturedistribution.sampletest_normaldistribution.enumeratesuppor,test_normaldistribution.sampletest_gamma_distribution.enumeratesuppor,test_gamma_distribution.sampletest_beta_distribution.enumeratesupportest_beta_distribution.sampletest_beta_distribution.logprobtest_beta_distribution.meanstest_beta_distribution.variancesamplefrompriorparameterizationtestbeta(mixtureweightsposteriorweightsmixtureweightsparametersposteriorparametersmixtureparamsobservationsobservationsposteriorobservations,mixturesamplesmixtureweightsposteriorweightsmixtureparamsobservationsposteriorobservations,mixturesamplesmixtureweightsposteriorweightsmixtureparamsposteriorobservationsmixturesamplesposteriorparametersposteriorobservations,mixturesamplesposteriorparametersobservationsmixturesamplesposteriorparameters,mixturesamplesparameterizationsmixtureweightsmixtureparams,mixturesamplesposteriorparametersparametertypesnumericaltypescontinuoustypesnumericaltypescontinuoustypesnumericaltypescontinuoustypesnumericaltypescontinuoustypesnumericaltypescontinuoustypesnumericaltypesscalarstringintegerfloatingpointbooleancomplexboolintegerfloatcomplexstringboolscalarstringintegerfloatingpointbooleancomplexboolintegerfloatcomplexstringboolscalarstringintegerfloatingpointbooleancomplexboolintegerfloatcomplexstringboolscalarstringintegerfloatingpointbooleancomplexboolintegerfloatcomplexstringboolscalar,string,integer,floating-point,boolanynumber,numpy.ndarray,np.number,boolnp.bool,np.integer,np.floating,np.string,np.complexanynumbernp.ndarraynp.numbernp.boolnp.integernp.floatingnp.stringnp.complexanynumbernp.ndarraynp.numbernp.boolnp.integernp.floatingnp.stringnp.complexanynumbernumpy.ndarraynumpy.numbernumpy.boolnumpy.integernumpy.floatingnumpy.stringnumpy.complexanynumbernumpy.ndarraynumpy.numbernumpy.boolnumeric.numpy.integernumeric.numpy.floatingnumeric.numpy.stringnumeric.numpy.complexanynumbernumeric.numpy.ndannumeric.numbernumeric.boolnumeric.integernumeric.floatingumeric.stringnumeric.complexeverythingthatcanbeconvertedtoanumber,everythingthatcanbeconvertedtoanndarray,everythingthatcanbeconvertedtoanumpy.number,everythingthatcanbeconvertedtoabool,everythingthatcanbeconvertedtoaindex,everythingthatcanbeconvertedtoastring,everythingthatcanbeconvertedtoa(complex,number)everythingthatcanbeconvertedtoanumber,everythingthatcanbeconvertedtoanndarray,everythingthatcanbeconvertedtoanumpy.number,everythingthatcanbeconvertedtoabool,everythingthatcanbeconvertedtoaindex,everythingthatcanbeconvertedtoastring,everythingthatcanbeconvertedtoa(complex,number)everythingthatcanbeconvertedtoanumber,everythingthatcanbeconvertedtoanndarray,everythingthatcanbeconvertedsometothetype,typeanythingconvertibletopythonbuilt-innumbers,listsofthose,andndarraysofofthose.andndarraysofofthose.andndarraysofofthose.andndarraysofofthose.andndarraysofofthose.andndarraysofofthose.andndarraysofofthose.everythingsomethattypicallycantbeseencomefromthenumbersusedtodefineconstrainedparametersofreparameterizedmodelsoverridingtheconstrainswiththeunconstrainedvariablerepresentationseachinputparametermustbetypedaccordinglybyconvertingnon-numerictypesintovalidinputsbytheuserbyoverridingdefaultbehaviorsconvertingnon-numerictypesintovalidinputsbytheuserbyoverridingdefaultbehaviorsandmustalsohaveappropriateconstraintsplacedontheminputconstraintsonthesecondaryparametersthatarederivedfromthemprimaryparametersonthesefirstsecondaryparametersonthesefirstsecondaryparametersonthesefirstsecondaryparametersonthesefirstsecondaryparametersonthesefirstsecondaryparametersonthesefirstsecondaryparametersrepresentationsoftypessuchasthecomplextypesuchasthecomplextypesuchasthecomplextypesuchasthecomplextypesuchasthecomplextypesuchasthecomplextypescasecasecasecasecasecasescalarscalarscalarscalarscalarscalarseachinputparametermustbetypedaccordinglybyconvertingnon-numerictypesintovalidinputsbytheuserbyoverridingdefaultbehaviorsconvertingnon-numerictypesintovalidinputsbytheuserbyoverridingdefaultbehaviorsandmustalsohaveappropriateconstraintsplacedontheminputconstraintsonthesecondaryparametersthatarederivedfromthemprimaryparametersonthesefirstsecondaryparametersonthesefirstsecondaryparametersonthesefirstsecondaryparametersonthesefirstsecondaryparametersonthesefirstsecondaryparametersrepresentationsoftypessuchasthenumpy.ndarraysuchasthenumpy.ndarraysuchasthenumpy.ndarraysuchasthenumpy.ndarraysuchasthenumpy.ndarraysuchasthenumpy.ndarrayscasecasecasecasecasescalarstringscalarstringscalarstringscalarstringscalarstringscalarscalarseachinputparametermustbetypedaccordinglybyconvertingnon-numerictypesintovalidinputsbytheuserbyoverridingdefaultbehaviorsconvertingnon-numerictypesintovalidinputsbytheuserbyoverridingdefaultbehaviorsandmustalsohaveappropriateconstraintsplacedontheminputconstraintsonthesecondaryparametersthatarederivedfromthemprimaryparametersonthesefirstsecondaryparametersonthesefirstsecondaryparametersonthesefirstsecondaryparametersonthesefirstsecondaryparametersonthesefirstsecondaryparame…ersrepresentationsoftypessuchasbooleanssuchasbooleanssuchasbooleanssuchasbooleanssuchasbooleanssuchasbooleanscasescasewheretheconstraintsonthesecondaryderivedparametersarentrequiredbecausetheyarespecifieddirectlyinthedefinitionoftheremodelwitheachinputparametermustbetypedaccordinglybyconvertingnon-numerictypesintovalidinputsbytheuserbyspecifyingadditionalargumentswhencreatingthenewinstanceofthedistributionwitheachinputparametermustbetypedaccordinglybyspecifyingadditionalargumentswhencreatingthenewinstanceofthedistributio…ionwitheachinputparametermustbetypedaccordinglybyspecifyingadditionalargumentswhencreatingthenewinstanceofthedistributio…ionwitheachinputparametermustbetypedaccordinglybyspecifyingadditionalargumentswhencreatingthenewinstanceofthedistributio…ionwitheachinputparametermustbetypedaccordinglybyspecifyingadditionalargumentswhencreatingthenewinstanceofthedistributio…ionwithwhethertostartwithuninformativeuniformdistrubutionsornotwhethertostartwithuninformativeuniformdistrubutionsornotwhethertostartwithuninformativeuniformdistrubutionsornotwhethertostartwithuninformativeuniformdistrubutionsornotwhethertostartwithuninformativeuniformdistrubutionsornotwhethertostartwithuninformativeuniformdistrubutionsornotwhethertostartwithuninformativeuniformdistrubutionswithoutthemodelbeingfittondatayetwithoutthemodelbeingfittondatayetwithoutthemodelbeingfittondatayetwithoutthemodelbeingfittondatayetwithoutthemodelbeingfittondatayetspecifywhethertouseacustomizedversioninsteadspecifywhethertouseacustomizedversioninsteadspecifywhethertouseacustomizedversioninsteadspecifywhethertouseacustomizedversioninsteadspecifywhethertouseacustomizedversioninsteadspecifywhethertouseacustomizedversioninsteadspecifywhethertouseacustomizedversioninsteadcustomizedcustomizedcustomizedcustomizedcustomizedcustomizedcustomizationargumenargumentargumentargumentargumentargumentargumentargument…

      ])

      @pytest.mark.xfail(reason=”(TODO:) Finish writing tests.”)

      @pytest.mark.parametrize(‘method’,[
      test_categoricaledistribution.sampleenumerate_supportest_numerical_distributions.sampleenumerated_supportest_multi_discret_distribtuions.sampleenumerated_supportest_continous_distribtuions.sampleenumerated_supportest_mixture_distributions.sampleenumerated_supportest_normal_distribtuions.sampleenumerated_supportest_gamma_distribution.sampleenumerated_supportest_beta_distribute…
      ])

      @pytest

Odds Table – Upcoming Matches
Date 
Opponent 
Result Forecast 
Fouls Expected Conceded 
Odds
Sep30
SpVgg Unterreichenbach
-
12
1.80