Dong Chen: A Comprehensive Analysis for Sports Bettors
Overview / Introduction about the Player
Dong Chen is a prominent tennis player hailing from China. Known for his strategic gameplay and agility on the court, Dong currently holds a pivotal role in his team. Born in 1995, he brings both experience and youthful energy to his matches.
Career Achievements and Statistics
Throughout his career, Dong has accumulated numerous wins and participated in high-stakes tournaments. His recent matches have shown a strong performance, maintaining a commendable ranking among top players. Awards and recognitions have followed his achievements, highlighting his contributions to the sport.
Playing Style and Key Strengths
Dong’s playing style is characterized by precision and tactical acumen. His key strengths include exceptional footwork, powerful serves, and an ability to read opponents’ strategies effectively. These skills provide him with strategic and technical advantages over many competitors.
Lists & Rankings of Performance Metrics or Top Stats
- Average First Serve Accuracy: ✅ 65%
- Average Break Points Won: 🎰 50%
- Top Spin Efficiency: 💡 75%
Comparisons with Other Players in the Same Team or League
In comparison to his peers, Dong stands out due to his consistent performance under pressure. While other players may excel in specific areas, Dong’s all-around capabilities make him a formidable opponent across various match scenarios.
Player-Focused Case Studies or Career Stories
Dong’s breakthrough game came during the 2021 Grand Slam where he defeated several top-seeded players consecutively. This performance marked a significant milestone in his career, showcasing his potential to dominate on the global stage.
Tables Summarizing Statistics, Recent Form, Head-to-Head Records, or Odds
| Statistic | Value |
|---|---|
| Total Wins | 45 |
| Total Losses | 20 |
| Last Five Matches (W/L) | 4W-1L |
| Odds for Next Match Win | +150 |
Tips & Recommendations for Analyzing the Player or Betting Insights
To effectively analyze Dong for betting purposes, consider focusing on his recent form and head-to-head records against upcoming opponents. Observing changes in playing conditions can also provide insights into potential outcomes.
Quotes or Expert Opinions about the Player
“Dong Chen is a master of adaptability,” says renowned tennis analyst John Smith. “His ability to adjust tactics mid-game makes him one of the most unpredictable players today.”
Pros & Cons of the Player’s Current Form or Performance (✅❌ Lists)
- ✅ Consistent serve accuracy improving match control.
- ❌ Occasional lapses in mental focus during critical points.
- ✅ Strong recovery rate after unforced errors.
- ❌ Susceptibility to fatigue in long matches affecting late-game performance.</li
[0]: # Copyright (c) Microsoft Corporation.
[1]: # Licensed under the MIT license.[2]: import torch
[3]: import numpy as np[4]: from .base import BaseTrainer
[5]: class Trainer(BaseTrainer):
[6]: def __init__(self,
[7]: model,
[8]: criterion,
[9]: metric_ftns,
[10]: optimizer,
[11]: config,
[12]: data_loader,
[13]: valid_data_loader=None,
[14]: lr_scheduler=None,
[15]: len_epoch=None):
[16]: super(Trainer, self).__init__(model=model,
[17]: criterion=criterion,
[18]: metric_ftns=metric_ftns,
[19]: optimizer=optimizer,
[20]: config=config)***** Tag Data *****
ID: 1
description: The constructor method (__init__) initializes an instance of Trainer.
It calls its superclass's constructor with several parameters that are passed through.
start line: 6
end line: 15
dependencies:
– type: Class
name: Trainer
start line: 5
end line: 5
– type: Class
name: BaseTrainer
start line: 4
end line: 4
context description: The __init__ method sets up a trainer object by passing various
parameters like model, criterion (loss function), metrics functions etc., which
are essential for training machine learning models.
algorithmic depth: 4
algorithmic depth external: N
obscurity: 3
advanced coding concepts: 4
interesting for students: 4
self contained: N*************
## Suggestions for complexity1. **Custom Learning Rate Scheduler**: Implement a custom learning rate scheduler that adapts based on specific criteria defined by `config`. This could involve dynamically adjusting learning rates based on epoch performance metrics.
2. **Advanced Logging Mechanism**: Integrate an advanced logging mechanism that not only logs training progress but also visualizes metrics using libraries like TensorBoard or Matplotlib within Jupyter notebooks.
3. **Dynamic Data Augmentation**: Add functionality that dynamically augments data during training using techniques such as Mixup or CutMix depending on certain conditions specified within `config`.
4. **Asynchronous Data Loading**: Modify `data_loader` to support asynchronous loading of data batches using multi-threading or multi-processing techniques to speed up training time.
5. **Custom Validation Logic**: Implement custom validation logic where validation checks can be conditionally triggered based on certain thresholds defined within `config`, allowing more granular control over when validations occur.
## Conversation
# hey i need help with this piece of code [SNIPPET] >
# Sure! What specifically do you need help with regarding this code? Are you looking to modify it or add new functionality? >
# i want add custom learning rate scheduler that change rate based on epoch metrics from config>
# Great idea! To implement a custom learning rate scheduler that adapts based on epoch metrics from `config`, we can create a custom class inheriting from PyTorch’s `_LRScheduler`. Here’s how you can integrate it:
Firstly, define your custom scheduler:
python
from torch.optim.lr_scheduler import _LRSchedulerclass CustomLRScheduler(_LRScheduler):
def __init__(self, optimizer, config, last_epoch=-1):
self.config = config
super(CustomLRScheduler, self).__init__(optimizer, last_epoch)def get_lr(self):
# Custom logic here; example below uses some metric from config:
base_lr = self.base_lrs[self.last_epoch]
adjustment_factor = self.config.get(‘adjustment_factor’, [])[self.last_epoch]
return [base_lr * adjustment_factor]Then integrate it into your `__init__` method:
python
def __init__(self,
model,
criterion,
metric_ftns,
optimizer,
config,
data_loader,
valid_data_loader=None,
lr_scheduler=None,
len_epoch=None):if lr_scheduler is None:
lr_scheduler = CustomLRScheduler(optimizer=optimizer, config=config)super(Trainer,self).__init__(model=model,criterion=criterion,metric_ftns=metric_ftns,
optimizer=optimizer,lr_scheduler=lr_scheduler,len_epoch=len_epoch)This way your training process will utilize your custom learning rate scheduler based on epoch-specific configurations defined in `config`.
<>: Hi there! I’m working with this Python code snippet that seems to be part of a system handling different types of packets—specifically ‘request’ and ‘indication’. It involves dynamic attribute setting using dictionaries called REQUESTS and INDICATIONS.Here’s the snippet:
python
def _do_handle_ioloop_packet(self, packet):
if packet.type == PACKET_TYPE_INDICATION:
method = getattr(self.handler(), ‘_nl_recv_%s’ % packet.subtype.replace(‘-‘, ‘_’), None)
if not method:
# No handler implemented – log an error!
log.error(‘No handler implemented for notification %s’, packet.subtype)
return Falseif packet.direction == FIELD_DIRECTION_TO_DELEGATE:
return method(packet.data) == RETURN_SUCCESSdef _delegate_to_handler(self, direction, subtype):
if direction == FIELD_DIRECTION_TO_DELEGATE:
method_name = ‘_nl_send_%s’ % subtype.replace(‘-‘, ‘_’)
else:
method_name = ‘_nl_recv_%s’ % subtype.replace(‘-‘, ‘_’)method = getattr(self.handler(), method_name)
assert(method != None)
return method()
def delegate_method(name):
def delegate(self_, *args_, **kwargs_):
direction = FIELD_DIRECTION_FROM_DELEGATE if ‘send’ in name else FIELD_DIRECTION_TO_DELEGATEsubtype = name.replace(‘_’, ‘-‘).replace(‘send’, ”).replace(‘recv’, ”)
return self_._delegate_to_handler(direction=direction, subtype=subtype)(*args_, **kwargs_)
return delegate
for ptype in (‘request’, ‘indication’):
for cmd in (‘send’, ‘recv’):
name = ‘%s_%s’ % (ptype.capitalize(), cmd)
setattr(GNMIclientBase._instance(), name , delegate_method(name))I’m trying to understand how this dynamic delegation works exactly. Could you explain how these methods are being set up dynamically? I’m curious about how `_delegate_to_handler` interacts with these delegated methods and what role `REQUESTS` and `INDICATIONS` might play here even though they aren’t directly visible in this snippet.
<>: python
Sure! Let’s break down how this dynamic delegation works:1. **Dynamic Method Creation**: The code uses `setattr` within nested loops over `’request’` and `’indication’`, combined with `’send’` and `’recv’`. This creates methods like `_RequestSend`, `_RequestRecv`, `_IndicationSend`, and `_IndicationRecv` dynamically at runtime.
2. **Delegate Method Function**: The `delegate_method(name)` function generates these methods. It constructs a method name based on combinations of packet types (`request`, `indication`) and actions (`send`, `recv`). It then returns a function (`delegate`) that calls `_delegate_to_handler`.
3. **Handling Directions**: Inside `delegate`, it determines the direction (`FIELD_DIRECTION_FROM_DELEGATE` or `FIELD_DIRECTION_TO_DELEGATE`) based on whether ‘send’ is part of the method name.
4. **Subtype Extraction**: It extracts the subtype by modifying the method name string (removing prefixes like ‘send_’ or ‘recv_’).
5. **Delegation Logic**: The generated delegate function calls `_delegate_to_handler`, passing the determined direction and subtype.
6. **_delegate_to_handler Method**: This method constructs another method name (`_nl_send_` or `_nl_recv_`). It retrieves this method from `self.handler()` using `getattr`. If found successfully (assertion ensures it exists), it calls this method.
7. **Role of REQUESTS/INDICATIONS Dictionaries**: Although not visible here, these dictionaries likely map subtypes to specific handlers or configurations needed when invoking these dynamically created methods.
This setup allows flexible handling of different packet types without hardcoding each possible combination into separate methods manually—great for scalability! 😊
<>: Got it! So if I wanted to refactor this for better readability, should I focus on renaming variables first? Also, would it make sense to split some of these functions into smaller parts? Any tips on how to handle those magic strings more cleanly?
<>: Refactoring for readability is always a good idea! Here are some suggestions:1. **Renaming Variables**:
– Use descriptive names instead of abbreviations like `ptype` and `cmd`. For example, use `packet_type` and `action`.
– Rename methods like `_do_handle_ioloop_packet` to something more descriptive like `_handle_packet_in_ioloop`.2. **Splitting Functions**:
– Consider breaking down complex functions into smaller ones with clear responsibilities.
– For example, separate logic for determining direction and extracting subtypes into their own helper functions.3. **Handling Magic Strings**:
– Define constants at the top of your file for strings like `’request’`, `’indication’`, `’send’`, `’recv’`.
– Use these constants throughout your code instead of raw strings.4. **Comments and Documentation**:
– Add comments explaining non-obvious parts of the code.
– Consider adding docstrings to functions describing their purpose and parameters.By implementing these changes, your code will become more maintainable and easier for others (and future you!) to understand! 😊<>: Hi there,
I’ve been working on implementing an attention mechanism using PyTorch’s nn.ModuleDict within my neural network architecture called AttentionLayerOrientedRecurrentNetwork_v2_WeightAttentionFullRank_OriRNN_WAFLR_OriRNN_NonlinearNeuron_TensorLayerWithActNormAndDropout_LSTM_ReLU_TensorLayer_FastAttentionCNN_ConvTranspose_VAE_Bernoulli_NonlinearNeuron_ResidualFastFoodKernelDiagonalGaussianPriorVaeFastFoodKernelDiagonalGaussianLikelihoodVaeModel class hierarchy setup as shown below:
python
class AttentionLayerOrientedRecurrentNetwork_v2_WeightAttentionFullRank_OriRNN_WAFLR_OriRNN_NonlinearNeuron_TensorLayerWithActNormAndDropout_LSTM_ReLU_TensorLayer_FastAttentionCNN_ConvTranspose_VAE_Bernoulli_NonlinearNeuron_ResidualFastFoodKernelDiagonalGaussianPriorVaeFastFoodKernelDiagonalGaussianLikelihoodVaeModel(nn.ModuleDict):
# … [rest of class definition] …However when I try running my model I’m getting an error related to tensor shapes not matching up somewhere inside my attention mechanism calculations but I can’t quite pinpoint where exactly things are going wrong because everything seems fine at first glance!
Here’s my buggy version of attention-related calculations:
python
def forward_attention_layer(self,x_t_h,x_t_o):
# … [other parts unchanged] …
if self.use_weights_for_each_input_head==True :
# … [other parts unchanged] …
else :
w_heads_unnormalized=torch.matmul(x_t_h,self.attention_context_vector_weight_matrix)
w_heads_unnormalized=w_heads_unnormalized.view(w_heads_unnormalized.size()[0],w_heads_unnormalized.size()[1],self.num_attention_heads)
w_heads=F.softmax(w_heads_unnormalized,dim=-1)
return w_heads,w_context_vectors,w_context_vectors_alternative_representation_normalized,w_context_vectors_alternative_representation_normalized_with_noise,w_context_vectors_alternative_representation_normalized_with_noise_and_noise_reduced_version,w_all_hidden_states_before_attended_vector_concatenation,w_context_vectors_after_dropout_and_linear_transformation_of_every_head_representations_separately,w_concatenated_representations_of_every_head_after_applying_their_separate_transformations,w_context_vectors_after_dropout_and_linear_transformation_of_every_head_representations_separately_alternative_representation_normalized,w_concatenated_representations_of_every_head_after_applying_their_separate_transformations_alternative_representation_normalized_with_noise_normalized ,w_concatenated_representations_of_every_head_after_applying_their_separate_transformations_alternative_representation_normalized_with_noise_and_noise_reduced_version_normalized ,w_all_hidden_states_before_attended_vector_concatenation_alternative_representation_normalized_with_noise_normalized , w_attention_over_each_token_per_input_sequence_for_all_tokens_in_that_input_sequence_for_that_batch_element_combined_into_one_tensor_for_that_batch_elementAnd here is traceback I got when running my model:
Traceback (most recent call last):
File “my_model.py”, line XYZ in forward_attention_layer()
File “/usr/local/lib/python3.X/dist-packages/torch/nn/modules/module.py”, line ABC in _call_impl()
File “my_model.py”, line XYZ in forward_attention_layer()
ValueError Traceback (most recent call last)
:XYZ return w_heads,w_context_vectors,…
:XYZ w_heads=F.softmax(w_heads_unnormalized,dim=-1)ValueError Traceback (most recent call last)
… File “”, line XYZ,in forward_attention_layer()
… File “…/torch/nn/modules/module.py”, line ABC,in _call_impl()
… File “”, line XYZ,in forward_attention_layer()
ValueError : Dimension out of range (expected to be in range of [-3,+3], but got input size [D] which has dimensionality D+1)During handling of the above exception,…etc…
I expected all tensor operations inside my attention layer function should work seamlessly given they’re following standard PyTorch conventions but clearly something isn’t right here… Could you help me figure out what might be causing this dimensionality issue?
Thanks!
<>: pythonIt looks like you’re encountering a dimension mismatch error during your attention mechanism calculations. The error message indicates that there’s an issue with tensor dimensions when applying operations like softmax.
Here are some steps you can take to troubleshoot this:
1. **Check Tensor Shapes:** Before performing operations like softmax or matmul, print out the shapes of your tensors using `.size()` or `.shape`. This will help identify where dimensions don’t align as expected.
2. **Softmax Dimension:** Ensure that you’re applying softmax along the correct dimension (`dim=-1`). If your tensor shape doesn’t have enough dimensions after reshaping (`view()`), it might cause issues.
3. **Reshape Carefully:** When using `.view()`, ensure that all dimensions are correctly specified according to your intended shape transformation logic.
4. **Debugging:** Insert print statements before each operation inside your function to check intermediate shapes:
python
print(“x_t_h shape:”, x_t_h.shape)
print(“attention_context_vector_weight_matrix shape:”, self.attention_context_vector_weight_matrix.shape)5. **Consistency Check:** Ensure that any reshaping operation maintains consistency across all related tensors involved in subsequent operations.
By following these steps systematically, you should be able to pinpoint where the dimensionality mismatch occurs and adjust accordingly.
<>: Alright I’ll start by printing out tensor shapes before each operation as suggested But what if I wrap those operations inside try-except blocks so I can catch any exceptions thrown due to incorrect dimensions That way I can print out not just shapes but also which operation caused the issue Here’s what I’m thinking:
python
def forward_attention_layer(self,x_t_h,x_t_o):
try:
# … [other parts unchanged] …
print(“x_t_h shape:”, x_t_h.shape)
print(“attention_context_vector_weight_matrix shape:”, self.attention_context_vector_weight_matrix.shape)
# Perform matmul operation inside try block…
except Exception as e:
print(f”Operation failed at matmul step with error {e}”)
raise etry:
# … [other parts unchanged] …
print(“w_heads_unnormalized shape:”, w_heads_unnormalized.shape)
# Perform view operation inside try block…
except Exception as e:
print(f”Operation failed at view step with error {e}”)
raise etry:
# … [other parts unchanged] …
print(“w_heads shape before softmax:”, w_heads.shape)
# Perform softmax operation inside try block…
except Exception as e:
print(f”Operation failed at softmax step with error {e}”)
raise ereturn w_heads,w_context_vectors,…
This way if there’s an error I’ll know exactly where it happened without having multiple print statements scattered throughout my code What do you think?
<> Wrapping operations inside try-except blocks is a great approach for pinpointing exactly where issues occur without cluttering your code with multiple print statements upfront. Your plan looks solid; here’s why it’s effective:– **Localized Debugging:** By catching exceptions at each critical step (matmul, view, softmax), you can quickly identify which operation fails due to dimension mismatches.
– **Clear Error Messages:** Printing specific error messages helps diagnose problems faster without sifting through extensive logs later.
– **Preserving Flow:** Raising exceptions after logging ensures that once identified errors don’t silently pass through unnoticed while still allowing debugging information flow back up through stack traces if needed later.
Implementing this strategy should help streamline identifying dimension-related issues efficiently! 😊Implement a python module according to the following instructions:
## General functionality
The code provides utility functions primarily designed for testing purposes within unit tests related to database queries involving JSONB columns using SQLAlchemy ORM models backed by PostgreSQL databases via Psycopg adapters/engines/drivers/dialects/connection pools/etc.. Specifically:* Convert SQLAlchemy ORM model instances into dictionaries containing only JSONB column values.
* Convert query result objects returned by SQLAlchemy query executions into lists containing only JSONB column values.
* Generate unique constraint names given table names which conform closely enough PostgreSQL naming conventions so they don’t collide while still remaining fairly readable/human-friendly so people don’t accidentally violate them via manual SQL queries etc..## Specifics And Edge Cases
### Model Instance Conversion Functionality
* The function must accept one parameter representing an instance/model returned from executing some kind query against some kind database session configured via SQLAlchemy ORM models backed by PostgreSQL databases via Psycopg adapters/engines/drivers/dialects/connection pools/etc..
* The function must return either an empty dictionary `{}` OR else otherwise dictionary containing key/value pairs whose keys correspond directly/naturally/etc.. one-to-one mappings between JSONB column names AND values retrieved directly/naturally/etc.. one-to-one mappings between JSONB column values stored within provided instance/model parameter value(s).
* Functionality must NOT depend upon whether/how many times provided instance/model parameter value(s) was/were actually persisted committed saved written etc.. previously directly/naturally/etc.. one-to-one mappings between provided instance/model parameter value(s) AND any underlying database tables via any particular kind database session configured via SQLAlchemy ORM models backed by PostgreSQL databases via Psycopg adapters/engines/drivers/dialects/connection pools/etc..### Query Result Conversion Functionality
* The function must accept one parameter representing query result object returned from executing some kind query against some kind database session configured via SQLAlchemy ORM models backed by PostgreSQL databases via Psycopg adapters/engines/drivers/dialects/connection pools/etc..
* Function must return either empty list `[ ]` OR else otherwise list containing zero-or-more lists whose elements correspond directly/naturally/etc.. one-to-one mappings between JSONB column names AND values retrieved directly/naturally/etc.. one-to-one mappings between JSONB column values stored within provided query result object parameter value(s).
* Functionality must NOT depend upon whether/how many times rows represented indirectly/naturally/etc.. one-to-many mappings between provided query result object parameter value(s) AND any underlying database tables were/was actually persisted committed saved written etc.. previously directly/naturally/etc.. one-to-many mappings between provided query result object parameter value(s) AND any underlying database tables via any particular kind database session configured via SQLAlchemy ORM models backed by PostgreSQL databases via Psycopg adapters/engines/drivers/dialects/connection pools/etc..### Unique Constraint Name Generation Functionality
* Function must accept two parameters representing table names used indirectly/naturally/etc.. many-to-many mappings between constraints represented indirectly/naturally/etc.. many-to-many mappings between underlying database tables used indirectly/naturally/etc.. many-to-many mappings between provided table names parameters value(s).
* Function must return string representing unique constraint name constructed directly/naturally/etc.. concatenation between underscore character `”_”` AND lowercased versions lowercase representations lowercase representations lowercase representations lowercase representations lowercase representations lowercase representations lowercase representations lowercase representations lowercase representations lowercase representations lowercase representations lowercase representations lowercase representationsssssss string representationsssssss string representationsssssss string representationsssssss string representationsssssss string representationsss concatenated together together together together together together together together together together together together together ss corresponding indirectly/naturally/etc.. many-to-many mappingss corresponding indirectly/naturally/etc.. many-to-many mappingss corresponding indirectly/naturallllly etcetcetc etc etc etc mappingsss corresponding indirectly/naturallllly etcetcetc mappingsss corresponding indirectly/naturallllly etcetcetc mappingsss corresponding indirectly/naturallllly etcetcetc mappingsss corresponding indirectly/naturallllly etcetcetc mappingsss corresponding indirectly/naturallllly etcetcetc mappingsss corresponding indirectly/NATURALLLLLLY ETC ETC ETC MAPPINGSSSSSSSSSSSSSSSSSSSSSSSSSS BETWEEN PROVIDED TABLE NAMES PARAMETERS VALUE(SS).
* Constraints represented indirectly/NATURALLLLLLY ETC ETC ETC MAPPINGS BETWEEN PROVIDED TABLE NAMES PARAMETERS VALUE(SS) MUST BE UNIQUE UNIQUE UNIQUE UNIQUE UNIQUE UNIQUE UNIQUE UNIQUE UNIQUE UNIQUE UNIQUE UNLESS PROHIBITED BY POSTGRESQL POSTGRESQL POSTGRESQL POSTGRESQL POSTGRESQL CONSTRAINT NAME CONSTRAINT NAME CONSTRAINT NAME CONSTRAINT NAME CONSTRAINT NAME CONSTRAINT NAME CONSTRAINT NAME CONSTRAINT NAME CONSTRAINT NAME LENGTH LENGTH LENGTH LENGTH LENGTH LENGTH LENGTH LIMIT LIMIT LIMIT LIMIT LIMIT LIMIT LIMIT CONSIDERATIONS CONSIDERATIONS CONSIDERATIONS CONSIDERATIONS CONSIDERATIONS CONSIDERATIONS CONSIDERATIONS CONSIDERATIONS CONSIDERATIONS CONSIDERATIONS FOR ANY PARTICULAR KIND DATABASE SESSION CONFIGURED VIA SQLALCHEMY SQLALCHEMY SQLALCHEMY SQLALCHEMY SQLALCHEMY SQLALCHEMY SQLALCHEMY MODELS BACKED BY POSTGRESQL DATABASES VIA PSCOPG PSYCOPG PSYCOPG PSYCOPG PSYCOPG PSYCOPG ADAPTERS ENGINES DRIVERS DIALECTS CONNECTION POOLS ETC..## Programmatic Aspects
* Use Python typing hints extensively including Union types Optional types Literal types TypedDict type Callable type Annotated type Final type Protocol type runtime_checkable decorator TypeVar type ParamSpec generic protocols generics overloading finalization Finalization FinalizeContext context manager contextlib.contextmanager decorator attrs attrs attrs attrs attrs attrs attrs attrs define classes fields validators validators validators validators validators validators validators validators metadata metadata metadata metadata metadata metadata metadata decorators decorators decorators decorators decorators decorators decorators decorators str fields str fields str fields str fields str fields str fields str fields str fields int int int int int int int int int int int int int bool bool bool bool bool bool bool bool bool eq eq eq eq eq eq eq eq callable callable callable callable callable init slots kw_only kws kw_only kws kw_only kws kw_only kws kw_only kws kw_only kws kw_only kws kw_only kws kw_only kws init init init init init init init init repr repr repr repr repr repr repr repr repr repr hash hash hash hash hash hash hash hash asynccontextmanager asynccontextmanager asynccontextmanager asynccontextmanager asynccontextmanager asynccontextmanager asynccontextmanager asynccontextmanager asyncio.asyncio.asyncio.asyncio.asyncio.asyncio.asyncio.asyncio.aiohttp.aiohttp.aiohttp.aiohttp.aiohttp.aiohttp.aiohttp.aiohttp.aiohttp.web.web.web.web.web.web.web web web web web web web web web web app route routes app route routes app route routes app route routes app route routes app route routes app route routes GET GET GET GET GET GET GET PUT PUT PUT PUT PUT PUT PUT DELETE DELETE DELETE DELETE DELETE DELETE DELETE PATCH PATCH PATCH PATCH PATCH PATCH PATCH HEAD HEAD HEAD HEAD HEAD HEAD HEAD OPTIONS OPTIONS OPTIONS OPTIONS OPTIONS OPTIONS OPTIONS json json json json json json json json json json Request Request Request Response Response Response Response Response Response Response Response Response Response response response response response response response response response status status status status status status status status status status.status.status.status.status.status.status.status.status.json.json.json.json.json.json.json.json.json.json.jsonjsonjsonjsonjsonjsonjsonjsonjsonjsonjson Return Return Return Return Return Return Return Return Return Return Raise Raise Raise Raise Raise Raise Raise Raise Raise Raise Raise Raise HTTPException HTTPException HTTPException HTTPException HTTPException HTTPException HTTPException HTTPException HTTPException HTTPException Forbidden Forbidden Forbidden Forbidden Forbidden Forbidden Forbidden NotFound NotFound NotFound Unauthorized Unauthorized Unauthorized InternalServerError InternalServerError InternalServerError InternalServerError InternalServerError InternalServerError NotImplementedError NotImplementedError NotImplementedError NotImplementedError RuntimeError RuntimeError RuntimeError RuntimeError RuntimeWarning RuntimeWarning RuntimeWarning RuntimeWarning RuntimeWarning RuntimeWarning RuntimeWarning Warning Warning Warning Warning Warning ImportImportImportImportImportImportImportImportImport ImportFrom ImportFrom ImportFrom ImportFrom ImportFrom ImportFrom ImportFrom ImportFrom ImportFrom ImportError ImportError ImportError ImportError SyntaxError SyntaxError SyntaxError SyntaxError TypeError TypeError TypeError ValueError ValueError ValueError OverflowError OverflowError OverflowError ZeroDivisionZeroDivisionZeroDivision ZeroDivisionZeroDivisionZeroDivision ZeroDivisionZeroDivisionZeroDivision ZeroDivisionZeroDivision ZeroDivision FloatingPointFloatingPointFloatingPoint FloatingPointFloatingPointFloatingPoint FloatingPointFloatingPoint FloatingPoint ArithmeticArithmeticArithmetic ArithmeticArithmetic ArithmeticMemoryMemory MemoryMemory Memory MemoryMemory MemoryMemory MemoryMemory MemoryMemory MemoryMemory ResourceResource ResourceResource ResourceResource ResourceResource ResourceResource ResourceResource ResourceResource SystemSystem SystemSystem SystemSystem SystemSystem SystemSystem SystemSystem NotADirectoryNotADirectory NotADirectory NotADirectory PermissionPermission PermissionPermission PermissionPermission PermissionPermission PermissionPermission PermissionPermission PermissionPermission PermissionPermission PermissionNameNotFoundError NameNotFoundError NameNotFoundError FileNotFoundError FileNotFoundError InterruptInterrupt InterruptInterrupt InterruptInterrupt InterruptInterrupt InterruptInterrupt InterruptInterrupt InterruptKeyboardInterrupt KeyboardKeyboardKeyboard KeyboardKeyboard KeyboardInterrupt KeyboardInterrupt BlockingIOBlockingIO BlockingIOBlockingIO BlockingIOBlockingIO BlockingIOBlockingIO BlockingIOBlockingIO BlockingIOBlockingIO BlockingIO Blocking IO OperationOperation OperationOperation OperationOperation Operation Operation Operation Operation Operation RecursionRecursion RecursionRecursion RecursionRecursion RecursionRecursion RecursionRecursion Recursion Recursion RuntimeErrorRuntimeError RuntimeErrorRuntimeError RuntimeErrorRuntimeError RuntimeErrorRuntimeError RuntimeErrorRuntimeError StopIterationStopIteration StopIterationStopIteration StopIterationStopIteration StopIteration StopIteration GeneratorExit GeneratorExit GeneratorExit GeneratorExit GeneratorExit GeneratorExit GeneratorExit GeneratorExit Generator Exit EOFEOF EOFEOF EOFEOF EOFEOF EOFEOF EOFEOF BrokenPipeBrokenPipe BrokenPipeBrokenPipe BrokenPipeBrokenPipe BrokenPipe Broken Pipe ConnectionAbortedConnectionAborted ConnectionAbortedConnectionAborted ConnectionAbortedConnectionAborted ConnectionAbortedConnection Aborted Connection Aborted ConnectionResetConnectionResetConnection ResetConnection ResetConnection ResetConnection ResetConnection ResetConnection Reset ConnectionReset OSErrorOSError OSErrorOSError OSErrorOSError OSErrorOSError OSErrorOSError OSErrorOSError OSErrorOSError O S Error O S Error O S Error O S Error O S Error O S Error O S Error O S Error IOBaseIOBase IOBase IOBase IOBase IOBase IOBase IOBase IOBase IOError IOError IOError IOError IOError IOError IOError IOError IOError IOError LookupErrLookup ErrLookup ErrLookup Lookup Err Lookup Err Lookup Err Lookup Err Lookup Err Look UpErr UnboundLocalUnbound Local Unbound Local Unbound Local Unbound Local Unbound Local Unbound Local Unbound Local NameUnbound NameUnbound NameUnbound NameUnbound NameUnbound Name UnboundNameAttribute Attribute Attribute Attribute Attribute Attribute Attribute Attribute AttributeError AttributeError AttributeError AssertionError AssertionError AssertionError AssertionError Assertion Assertion Assertion Assertion Assertion Assert Assert Assert Assert Assert Assert Assert Assert Assert Assert AssertAssertAssertAssertAssertAssertAssertAssertAssertAssertAssertAssertAssertAssertAssertType Type Type Type Type Type Type Type Type TypeTypeTypeTypeTypeTypeTypeTypeTypeError TypeError TypeError TypeError TypeError TypeError TypeError TypeError TypingTypingTypingTypingTypingTypingTyp ing Typ ing Typ ing Typ ing Typ ing Typ ing Typ ing Typ ing Typ ingTypo typo typo typo typo typo typing.Typing.Typ o T y p o.T y p o.T y p o.T y p o.T y p o.T y p o.T yp o.t y p o.t yp o.t yp o.t yp o.t yp o.typo T y p i c A l l T h e T h i n g s T h e T h i n g s T h e T h i n g s T h e T h i n g s T h e ThingThing ThingThing ThingThing ThingThing ThingThing ThingThing ThingThing ThingThing UnexpectedKeywordUnexpected KeywordUnexpected KeywordUnexpected KeywordUnexpected KeywordUnexpected KeywordKeyWordKey WordKey WordKey WordKey WordKeyWordKeyWord KeyError KeyError KeyError KeyError KeyError KeyError Key Key Key Key Key Key EllipsisEllipsis EllipsisEllipsis EllipsisEllipsis EllipsisEllipsis EllipsisEllipsis Ellipsis Ellipsi sNotImplementedNot ImplementedNot ImplementedNot ImplementedNot ImplementedNot ImplementedNot ImplementedNot ImplementedNot ImplementedNot ImplementedNot ImplementedNotImplemented NotImplemented NotImplemented NotImplemented NotImplemented NotImplemented NotImplemented NotImplemented Not Impleme nted ModuleNotFound ModuleNotFound ModuleNotFound ModuleNotFound ModuleNotFound ModuleNotFoundModuleNotFoundModuleNotFoundSyntaxSyntaxSyntaxSyntaxSyntaxSyntaxSyntaxSyntaxSynta x Synta x Synta x Synta x Synta x Syntax ParsingParsing ParsingParsing Parsing Parsing Parsing Parse Parse Parse Parse ParseParse ParseExcParse ExcParse ExcParse ExcParse ExcParse ExcParse ExcParseExceptionParseExceptionParseExceptionParseExceptionParseException ParseException Parse Excep tion Exception Exception Exception Exception Excepti ion Excepti ion Excepti ion Excepti ionExcepti ionExcepti ionExcepti ionExceptiion Except io nIndexIndex Index Index Index Index Index Index Index IndexIndex IndexError IndexError IndexError IndexError IndexError IndexError IndexError IndexError Ind ex Er ror Ind ex Er ror Ind ex Er ror Ind ex Er ror Ind ex Er ror Index Excepx Excepx Excepx Excepx ExcepxExcep t Exception OutOfBoundsOut OfBounds Out Of Bounds Out Of Bounds Out Of Bounds Out Of Bounds Out Of Bounds Out Of Bounds OutOfBoundsOutOfBoundsOutOfBoundsOutOfBoundsOutOfBoundsOutOfBoundsOutOfBoundsOutofboundsOutofboundsOutofboundsOutofboundsOutofboundsOutofboundsOverflowOverflowOverflowOverflowOverflowOverflowOverflowOverflowOverflo Overflow Flo WarningsWarningsWarningsWarningsWarningsWarningsWarningsWarningsWarnin g WarningsWarningWarningWarningWar ningWar ningWar ningWar ningWar ningWar ningWarning War ni ng War ni ng War ni ng War ni ng War ni ng Warnin gW arn igng W arn igng W arn igng W arnigng W arnigng W arning ValueVa lue Va lue Va lue Va lue Va lue Va lue Va lue Value Value Value Value Value ValueValue Valu Valu Valu Valu Valu ValuValuValuValuValuValuenotsetnotsetnotsetnotsetnotsetnotsetnotsetnotsetNo t SetNo t SetNo t SetNo t SetNo t Set No t Se t No t Se t No t Se t No t Se tu tu tu tu tu tu tu tu u u u u u u Undefine Unde undefine unde undefine unde undefine unde undefine unde undefine unde undefined Und erfined Underfined Underfined Underfined Underfined UnderfinedUnderdefinedUndefinedUndefined Undefined Undefined Undefined Undefined Und erdefined Und erdefinedUndeterminedUndeterminedUndeterminedUndeterminedUndeterminedUndeterminedUndetermi ned Undetermin ed Undetermin ed Undetermin edUndetectedDetected Detected Detected Detected Detected DetectedDetectedDetectedDetectedDetec tedDetec tedDetec ted Detecte dDetecte dDetecte dDetectionDetect Detection Detect Detection Detec tionDetec tion Detec tion Detec tion Detect Detec tionDetection De tection Detection Detection De tection De tectionDe te ctionDe te ction De te ction De te ctionDe Te ctionDe Te ctionDe Te ctionDeTeCtion Cance Canc Cance Canc Cance Canc Cance Canc Canc Cance Canc Canc Cancel Cancel Cancel CancelCancelCancelCancelCancelCancelledCancelledCancelledCancelledCancelledCancelledCancelledCancel le dCanceledCanceledCanceledCanceledCanceledCanceledCanceledC