The South Korean Women's Volleyball League is a premier competition that showcases the finest talent in women's volleyball. With teams from across the nation competing, the league is known for its high level of play and intense rivalries. As we look ahead to tomorrow's matches, fans and experts alike are eager to see how the season will unfold.
No volleyball matches found matching your criteria.
Several teams have been performing exceptionally well this season, making them key contenders in tomorrow's matches. Among them are:
Tomorrow promises exciting matchups that could determine the direction of the league standings. Key matches include:
Betting experts have analyzed past performances and current form to provide predictions for tomorrow's matches. Here are some insights:
This match is highly anticipated due to both teams' strong track records. Betting experts predict a close game, with slight favor towards Busan due to their recent home victories.
Daejeon enters this match as favorites, having consistently outperformed Seoul in previous encounters. Their agility and teamwork make them formidable opponents.
<|diff_marker|> ADD A1000 <|file_sep|># -*- coding: utf-8 -*- """ Created on Thu Jun 20 @author: rdelacruz """ import numpy as np from scipy import interpolate import matplotlib.pyplot as plt from scipy.optimize import curve_fit def gauss(x,a,mu,sigma): # ============================================================================= # print('a',a,'mu',mu,'sigma',sigma) # print('gauss(0)',gauss(0,a,mu,sigma)) # print('gauss(10)',gauss(10,a,mu,sigma)) # ============================================================================= # ============================================================================= # if sigma==0: # sigma=1e-5 # print('sigma set at ',sigma) # # if mu==0: # mu=1e-5 # print('mu set at ',mu) # ============================================================================= def fit_gaussian(x,y): # estimate starting values # Fit data using Gaussian function # calculate errors # return results def read_data(file_name): def plot_results(data,fitted_curve,xrange=None,yrange=None,title='',x_label='',y_label=''): <|repo_name|>rachel-delacruz/Simulations<|file_sep continuing code work here<|repo_name|>rachel-delacruz/Simulations<|file_sep delve into fitting gaussian curves and calculating error bars I want to use this script in my thesis so it has to be clean! This means: * no commented out code unless it is necessary (for example if I need something but it breaks something else) * functions should only do one thing - if you have multiple things going on in one function split it up! * use docstrings - not comments - when you write functions * use meaningful variable names - don't just call everything x,y,z etc. * keep track of what you are doing so I can understand what you did! (this goes along with all of those other things)<|file_sep**Test simulations** This folder contains test simulations for various potential functions. The potentials are defined as follows: `potential_1d.py` defines two potential wells separated by a barrier. `potential_1d_staggered.py` defines two staggered potential wells separated by a barrier. `potential_1d_well.py` defines one single potential well. `potential_1d_well_periodic.py` defines one single periodic potential well. The `test_simulations.ipynb` notebook demonstrates how these potentials can be used.<|repo_name|>rachel-delacruz/Simulations<|file_sep seed = np.random.randint(10000) class QuantumSimulator(object): def __init__(self, solver='schrodinger', potential='default', x_min=-5, x_max=5, n_points=200, mass=1., energy=0., time_step=0.005, num_steps=50000, time_start=0., save_every_n_steps=None, verbose=False): """Class which simulates quantum systems. Parameters ---------- solver : str Solver method; either 'schrodinger' or 'tdse'. potential : str or callable or NoneType Potential function; either name of predefined potential or custom potential function. x_min : float Start point of domain. x_max : float End point of domain. n_points : int Number of points in domain. mass : float Mass value used in Schrodinger equation. energy : float Energy value used in time-dependent Schrodinger equation. time_step : float Time step size used in time evolution algorithm (Crank-Nicolson). num_steps : int Number of steps taken by time evolution algorithm (Crank-Nicolson). time_start : float Start time for time evolution algorithm (Crank-Nicolson). save_every_n_steps : int or NoneType Save simulation state every n steps; None means save every step. verbose : bool Print additional information during simulation run. Returns ------- NoneType """ def set_solver(self,solver='schrodinger'): """Set solver method; either 'schrodinger' or 'tdse'. Parameters ---------- solver : str Returns ------- NoneType """ def set_potential(self,potential='default'): """Set potential function; either name of predefined potential or custom potential function. Parameters ---------- potential : str or callable Returns ------- NoneType """ def set_domain(self,x_min=-5,x_max=5,n_points=200): """Set domain parameters. Parameters ---------- x_min : float Start point of domain. x_max : float End point of domain. n_points : int Returns ------- NoneType """ def set_mass(self,mass=1.): """Set mass parameter used in Schrodinger equation. Parameters ---------- mass : float Returns ------- NoneType """ def set_energy(self,energy=0.): """Set energy parameter used in time-dependent Schrodinger equation. Parameters ---------- energy : float Returns ------- NoneType """ def set_time_evolution_params(self,time_step=0.005,num_steps=50000,time_start=0.,save_every_n_steps=None): """Set parameters related to time evolution algorithm (Crank-Nicolson). Parameters ---------- time_step: float Time step size used in time evolution algorithm (Crank-Nicolson). num_steps: int Number of steps taken by time evolution algorithm (Crank-Nicolson). time_start: float Start time for time evolution algorithm (Crank-Nicolson). save_every_n_steps: int or NoneType Save simulation state every n steps; None means save every step. Returns ------- NoneType """ """ def run_simulation(self,**kwargs): def default_potential(x): return np.zeros_like(x) def double_well_potential(x): return np.piecewise(x,[np.abs(x)<=3,np.abs(x)>3],[lambda x:(x**2-9),lambda x:(x**2+9)]) def staggered_double_well_potential(x): return np.piecewise(x,[np.abs(x)<=3,np.abs(x)>3],[lambda x:(x**2-9),(x**2+9)-6]) def single_well_potential(x): return np.piecewise(x,[np.abs(x)<=3,np.abs(x)>3],[lambda x:(x**2-9),lambda x:x**2]) if __name__ == '__main__': sim = QuantumSimulator() sim.run_simulation()<|repo_name|>rachel-delacruz/Simulations<|file_sep[//]: # "https://github.com/rachel-delacruz/Simulations/blob/master/potentials/potential_1d_staggered.py" [//]: # "import numpy as np" [//]: # "class Potential(object):" [//]: # "tt" [//]: [//]: # "'''Define class which represents potentials.'''" [//]: [//]: # "tt" [//]: [//]: # "tt" [//]: [//]: # "'''" [//]: [//]: # "tt" [//]: [//]: # "tt" [//]: [//]: # "ttt" [//]: [//]: # "Parameters" [//]: [//]: # "tt" [//]: [//]: # "tt" [//]: [//]: # "ttt" [//]: [//]: # "- **name**: strn" [//]: [//]: # "tttn" [//]: [//]: # "tttName identifier.n" [//]: [__] [___] [__] [__] [___] [ ] [ ] [ ] [ ] [ ] [ ] ## ## ## ## ## ## _ _ _ """nn""" """nn""" """n""" """n""" """n""" "" "" "" " "" "" "" " ": " ": " ": " " """ """ """ """ ": " ": " ": " " """ """ """ """ """ " """ " """ """ " """ """ """ """nnReturnsn-------nNoneTypennnnn""" "'''Initialize object.'''